scholarly journals Genetic dissection of the signaling domain of a mammalian steroid receptor in yeast.

1992 ◽  
Vol 3 (11) ◽  
pp. 1245-1257 ◽  
Author(s):  
M J Garabedian ◽  
K R Yamamoto

The mechanism of signal transduction by steroid receptor proteins is complex and not yet understood. We describe here a facile genetic strategy for dissection of the rat glucocorticoid receptor "signaling domain," a region of the protein that binds and transduces the hormonal signal. We found that the characteristics of signal transduction by the receptor expressed in yeast were similar to those of endogenous receptors in mammalian cells. Interestingly, the rank order of particular ligands differed between species with respect to receptor binding and biological efficacy. This suggests that factors in addition to the receptor alone must determine or influence ligand efficacy in vivo. To obtain a collection of receptors with distinct defects in signal transduction, we screened in yeast an extensive series of random point mutations introduced in that region in vitro. Three phenotypic classes were obtained: one group failed to bind hormone, a second displayed altered ligand specificity, and a third bound hormone but lacked regulatory activity. Our results demonstrate that analysis of glucocorticoid receptor action in yeast provides a general approach for analyzing the mechanism of signaling by the nuclear receptor family and may facilitate identification of non-receptor factors that participate in this process.

2000 ◽  
Vol 20 (6) ◽  
pp. 2004-2013 ◽  
Author(s):  
Annika E. Wallberg ◽  
Kristen E. Neely ◽  
Ahmed H. Hassan ◽  
Jan-Åke Gustafsson ◽  
Jerry L. Workman ◽  
...  

ABSTRACT The SWI-SNF complex has been shown to alter nucleosome conformation in an ATP-dependent manner, leading to increased accessibility of nucleosomal DNA to transcription factors. In this study, we show that the SWI-SNF complex can potentiate the activity of the glucocorticoid receptor (GR) through the N-terminal transactivation domain, τ1, in both yeast and mammalian cells. GR-τ1 can directly interact with purified SWI-SNF complex, and mutations in τ1 that affect the transactivation activity in vivo also directly affect τ1 interaction with SWI-SNF. Furthermore, the SWI-SNF complex can stimulate τ1-driven transcription from chromatin templates in vitro. Taken together, these results support a model in which the GR can directly recruit the SWI-SNF complex to target promoters during glucocorticoid-dependent gene activation. We also provide evidence that the SWI-SNF and SAGA complexes represent independent pathways of τ1-mediated activation but play overlapping roles that are able to compensate for one another under some conditions.


2000 ◽  
Vol 20 (20) ◽  
pp. 7559-7571 ◽  
Author(s):  
John J. Moskow ◽  
Amy S. Gladfelter ◽  
Rachel E. Lamson ◽  
Peter M. Pryciak ◽  
Daniel J. Lew

ABSTRACT CDC42 encodes a highly conserved GTPase of the Rho family that is best known for its role in regulating cell polarity and actin organization. In addition, various studies of both yeast and mammalian cells have suggested that Cdc42p, through its interaction with p21-activated kinases (PAKs), plays a role in signaling pathways that regulate target gene transcription. However, recent studies of the yeast pheromone response pathway suggested that prior results with temperature-sensitive cdc42 mutants were misleading and that Cdc42p and the Cdc42p-PAK interaction are not involved in signaling. To clarify this issue, we have identified and characterized novel viable pheromone-resistant cdc42 alleles that retain the ability to perform polarity-related functions. Mutation of the Cdc42p residue Val36 or Tyr40 caused defects in pheromone signaling and in the localization of the Ste20p PAK in vivo and affected binding to the Ste20p Cdc42p-Rac interactive binding (CRIB) domain in vitro. Epistasis analysis suggested that they affect the signaling step at which Ste20p acts, and overproduction of Ste20p rescued the defect. These results suggest that Cdc42p is in fact required for pheromone response and that interaction with the PAK Ste20p is critical for that role. Furthermore, the ste20ΔCRIB allele, previously used to disrupt the Cdc42p-Ste20p interaction, behaved as an activated allele, largely bypassing the signaling defect of thecdc42 mutants. Additional observations lead us to suggest that Cdc42p collaborates with the SH3-domain protein Bem1p to facilitate signal transduction, possibly by providing a cell surface scaffold that aids in the local concentration of signaling kinases, thus promoting activation of a mitogen-activated protein kinase cascade by Ste20p.


2004 ◽  
Vol 24 (2) ◽  
pp. 856-864 ◽  
Author(s):  
Linyu Li ◽  
Hong Xin ◽  
Xialian Xu ◽  
Mei Huang ◽  
Xinjun Zhang ◽  
...  

ABSTRACT Transforming growth factor beta (TGF-β)/bone morphogenetic protein (BMP) family ligands interact with specific membrane receptor complexes that have serine/threonine kinase activities. The receptor phosphorylation and activation induced by the ligands leads to phosphorylation of the Smad proteins, which translocate to the nucleus, controlling gene expression. Thus, regulation of Smad proteins is a key step in TGF-β/BMP-induced signal transduction. Here we report a novel mechanism of the regulation of SMAD-mediated signaling, by which the Smad1 protein level is controlled through expression of the CHIP protein. CHIP is a U-box-dependent E3 ubiquitin ligase, previously identified as a cochaperon protein. However, we have isolated CHIP as a Smad-interacting protein in a yeast two-hybrid screen using Smad1 as bait. Furthermore we have shown CHIP-Smad interaction using the 35S-labeled CHIP protein, which can interact with glutathione S-transferase (GST)-Smad1 and GST-Smad4 in an in vitro protein-binding assay. The CHIP-Smad interaction has been confirmed in vivo in mammalian cells through coimmunoprecipitation. Interestingly, we demonstrate that the coexpression of Smad1 and Smad4 with the CHIP protein results in the degradation of the Smad proteins through a ubiquitin-mediated process. Consistent with the observation that CHIP induces Smad1 degradation, we further show that the expression of CHIP can inhibit the transcriptional activities of the Smad1/Smad4 complex induced by BMP signals. Intriguingly, pBS/U6/CHIPi, which diminishes CHIP expression, significantly enhanced Smad1/Smad4- or BMPRIB(QD)-induced gene transcription. These results suggest that CHIP can interact with the Smad1/Smad4 proteins and block BMP signal transduction through the ubiquitin-mediated degradation of Smad proteins.


1997 ◽  
Vol 17 (6) ◽  
pp. 3065-3073 ◽  
Author(s):  
A Henriksson ◽  
T Almlöf ◽  
J Ford ◽  
I J McEwan ◽  
J A Gustafsson ◽  
...  

We have shown that the Ada adaptor complex is important for the gene activation capacity of the glucocorticoid receptor in yeast. The recently isolated human Ada2 protein also increases the potency of the receptor protein in mammalian cells. The Ada pathway is of key significance for the tau1 core transactivation domain (tau1c) of the receptor, which requires Ada for activity in vivo and in vitro. Ada2 can be precipitated from nuclear extracts by a glutathione S-transferase-tau1 fusion protein coupled to agarose beads, and a direct interaction between Ada2 and tau1c can be shown by using purified proteins. This interaction is strongly reduced by a mutation in tau1c that reduces transactivation activity. Mutations affecting the Ada complex do not reverse transcriptional squelching by the tau1 domain, as they do for the VP16 transactivation domain, and thus these powerful acidic activators differ in at least some important aspects of gene activation. Mutations that reduce the activity of the tau1c domain in wild-type yeast strains cause similar reductions in ada mutants that contain little or no Ada activity. Thus, gene activation mechanisms, in addition to the Ada pathway, are involved in the activity of the tau1c domain.


1997 ◽  
Vol 17 (12) ◽  
pp. 7208-7219 ◽  
Author(s):  
D E Breiding ◽  
F Sverdrup ◽  
M J Grossel ◽  
N Moscufo ◽  
W Boonchai ◽  
...  

The transactivation domain (AD) of bovine papillomavirus type 1 E2 stimulates gene expression and DNA replication. To identify cellular proteins that interact with this 215-amino-acid domain, we used a transactivation-defective mutant as bait in the yeast two-hybrid screen. In vitro and in vivo results demonstrate that the cDNA of one plasmid isolated in this screen encodes a 37-kDa nuclear protein that specifically binds to an 82-amino-acid segment within the E2 AD. Mutants with point mutations within this E2 domain were isolated based on their inability to interact with AMF-1 and were found to be unable to stimulate transcription. These mutants also exhibited defects in viral DNA replication yet retained binding to the viral E1 replication initiator protein. Overexpression of AMF-1 stimulated transactivation by both wild-type E2 and a LexA fusion to the E2 AD, indicating that AMF-1 is a positive effector of the AD of E2. We conclude that interaction with AMF-1 is necessary for the transcriptional activation function of the E2 AD in mammalian cells.


1998 ◽  
Vol 18 (9) ◽  
pp. 5380-5391 ◽  
Author(s):  
Enrique Castaño ◽  
Yelena Kleyner ◽  
Brian David Dynlacht

ABSTRACT The retinoblastoma (pRB) family of proteins includes three proteins known to suppress growth of mammalian cells. Previously we had found that growth suppression by two of these proteins, p107 and p130, could result from the inhibition of associated cyclin-dependent kinases (cdks). One important unresolved issue, however, is the mechanism through which inhibition occurs. Here we present in vivo and in vitro evidence to suggest that p107 is a bona fide inhibitor of both cyclin A-cdk2 and cyclin E-cdk2 that exhibits an inhibitory constant (Ki ) comparable to that of the cdk inhibitor p21/WAF1. In contrast, pRB is unable to inhibit cdks. Further reminiscent of p21, a second cyclin-binding site was mapped to the amino-terminal portions of p107 and p130. This amino-terminal domain is capable of inhibiting cyclin-cdk2 complexes, although it is not a potent substrate for these kinases. In contrast, a carboxy-terminal fragment of p107 that contains the previously identified cyclin-binding domain serves as an excellent kinase substrate although it is unable to inhibit either kinase. Clustered point mutations suggest that the amino-terminal domain is functionally important for cyclin binding and growth suppression. Moreover, peptides spanning the cyclin-binding region are capable of interfering with p107 binding to cyclin-cdk2 complexes and kinase inhibition. Our ability to distinguish between p107 and p130 as inhibitors rather than simple substrates suggests that these proteins may represent true inhibitors of cdks.


2008 ◽  
Vol 19 (12) ◽  
pp. 5296-5308 ◽  
Author(s):  
Mireille Khacho ◽  
Karim Mekhail ◽  
Karine Pilon-Larose ◽  
Arnim Pause ◽  
Jocelyn Côté ◽  
...  

The cytoplasmic translation factor eEF1A has been implicated in the nuclear export of tRNA species in lower eukaryotes. Here we demonstrate that eEF1A plays a central role in nuclear export of proteins in mammalian cells. TD-NEM (transcription-dependent nuclear export motif), a newly characterized nuclear export signal, mediates efficient nuclear export of several proteins including the von Hippel-Lindau (VHL) tumor suppressor and the poly(A)-binding protein (PABP1) in a manner that is dependent on ongoing RNA polymerase II (RNA PolII)-dependent transcription. eEF1A interacts specifically with TD-NEM of VHL and PABP1 and disrupting this interaction, by point mutations of key TD-NEM residues or treatment with actinomycin D, an inhibitor of RNA PolII-dependent transcription, prevents assembly and nuclear export. siRNA-induced knockdown or antibody-mediated depletion of eEF1A prevents in vivo and in vitro nuclear export of TD-NEM–containing proteins. Nuclear retention experiments and inhibition of the Exportin-5 pathway suggest that eEF1A stimulates nuclear export of proteins from the cytoplasmic side of the nuclear envelope, without entering the nucleus. Together, these data identify a role for eEF1A, a cytoplasmic mediator of tRNA export in yeast, in the nuclear export of proteins in mammalian cells. These results also provide a link between the translational apparatus and subcellular trafficking machinery demonstrating that these two central pathways in basic metabolism can act cooperatively.


Author(s):  
M. H. Chestnut ◽  
C. E. Catrenich

Helicobacter pylori is a non-invasive, Gram-negative spiral bacterium first identified in 1983, and subsequently implicated in the pathogenesis of gastroduodenal disease including gastritis and peptic ulcer disease. Cytotoxic activity, manifested by intracytoplasmic vacuolation of mammalian cells in vitro, was identified in 55% of H. pylori strains examined. The vacuoles increase in number and size during extended incubation, resulting in vacuolar and cellular degeneration after 24 h to 48 h. Vacuolation of gastric epithelial cells is also observed in vivo during infection by H. pylori. A high molecular weight, heat labile protein is believed to be responsible for vacuolation and to significantly contribute to the development of gastroduodenal disease in humans. The mechanism by which the cytotoxin exerts its effect is unknown, as is the intracellular origin of the vacuolar membrane and contents. Acridine orange is a membrane-permeant weak base that initially accumulates in low-pH compartments. We have used acridine orange accumulation in conjunction with confocal laser scanning microscopy of toxin-treated cells to begin probing the nature and origin of these vacuoles.


Author(s):  
Gustav Ofosu

Platinum-thymine has been found to be a potent antitumor agent, which is quite soluble in water, and lack nephrotoxicity as the dose-limiting factor. The drug has been shown to interact with DNA and inhibits DNA, RNA and protein synthesis in mammalian cells in vitro. This investigation was undertaken to elucidate the cytotoxic effects of piatinum-thymine on sarcoma-180 cells in vitro ultrastructurally, Sarcoma-180 tumor bearing mice were treated with intraperitoneal injection of platinum-thymine 40mg/kg. A concentration of 60μg/ml dose of platinum-thymine was used in in vitro experiments. Treatments were at varying time intervals of 3, 7 and 21 days for in vivo experiments, and 30, 60 and 120 min., 6, 12, and 24th in vitro. Controls were not treated with platinum-thymine.Electron microscopic analyses of the treated cells in vivo and in vitro showed drastic cytotoxic effect.


2018 ◽  
Author(s):  
Noor H. Dashti ◽  
Rufika S. Abidin ◽  
Frank Sainsbury

Bioinspired self-sorting and self-assembling systems using engineered versions of natural protein cages have been developed for biocatalysis and therapeutic delivery. The packaging and intracellular delivery of guest proteins is of particular interest for both <i>in vitro</i> and <i>in vivo</i> cell engineering. However, there is a lack of platforms in bionanotechnology that combine programmable guest protein encapsidation with efficient intracellular uptake. We report a minimal peptide anchor for <i>in vivo</i> self-sorting of cargo-linked capsomeres of the Murine polyomavirus (MPyV) major coat protein that enables controlled encapsidation of guest proteins by <i>in vitro</i> self-assembly. Using Förster resonance energy transfer (FRET) we demonstrate the flexibility in this system to support co-encapsidation of multiple proteins. Complementing these ensemble measurements with single particle analysis by super-resolution microscopy shows that the stochastic nature of co-encapsidation is an overriding principle. This has implications for the design and deployment of both native and engineered self-sorting encapsulation systems and for the assembly of infectious virions. Taking advantage of the encoded affinity for sialic acids ubiquitously displayed on the surface of mammalian cells, we demonstrate the ability of self-assembled MPyV virus-like particles to mediate efficient delivery of guest proteins to the cytosol of primary human cells. This platform for programmable co-encapsidation and efficient cytosolic delivery of complementary biomolecules therefore has enormous potential in cell engineering.


Sign in / Sign up

Export Citation Format

Share Document