scholarly journals Effect of lengthening lymphocyte function-associated antigen 3 on adhesion to CD2.

1992 ◽  
Vol 3 (2) ◽  
pp. 157-166 ◽  
Author(s):  
P Y Chan ◽  
T A Springer

The effect of lengthening the distance in an adhesion molecule between the receptor binding site and the membrane anchor was studied by inserting four Ig-like domains into the two Ig domain lymphocyte function-associated antigen 3 (LFA-3) molecule. The extended molecule expressed in Chinese hamster ovary (CHO) cells bound to CD2 on T lymphocytes 4- to 20-fold more efficiently than the wild-type molecule at 4 degrees C. Treatment of the CHO clones with neuraminidase to remove sialic acid, or with deoxymannojirimycin to reduce the bulk of N-linked glycosylation, showed that adhesion to both the wild-type and the chimeric LFA-3 molecules was under the influence of cell-cell repulsive forces to a similar extent and that these treatments had less effect than lengthening LFA-3. At higher temperatures, such as 22 and 37 degrees C, the efficiency of binding to the wild-type LFA-3 increased to levels comparable with binding to extended LFA-3. Our results suggest that more distal locations of the adhesive binding site from the cell membrane anchor increase the efficiency of cell-cell adhesion by enhancing the frequency of receptor encounter with ligand and that more proximal locations of the adhesive binding site can provide efficient cell-cell adhesion at physiological temperatures.

1996 ◽  
Vol 74 (3) ◽  
pp. 373-381 ◽  
Author(s):  
Martin Sandig ◽  
Yong Rao ◽  
Chi-Hung Siu ◽  
Vitauts I. Kalnins

The neural cell adhesion molecule NCAM is a member of the immunoglobulin (Ig) superfamily. NCAM can undergo homophilic binding and heterophilic interactions with cell surface components and is often concentrated at sites of intercellular contact. To investigate the molecular basis of this biased surface distribution, we examined L cell transfectants expressing wild-type or mutant forms of chick NCAM-140 by laser scanning confocal microscopy. Mutant NCAMs that lacked Ig-like domains 1, 2, 4, or 5 were preferentially localized in contact regions. However, the relative concentration of these mutant NCAMs in contact sites was substantially reduced compared with wild-type NCAM. In contrast, NCAM redistribution to intercellular contacts was abolished in cells expressing mutant NCAMs that either lacked Ig-like domain 3 or contained mutations in the homophilic binding site in this domain. In heterotypic contacts between PC12 cells and L cell transfectants, colocalization of rat NCAM and chick NCAM was again dependent on the integrity of the homophilic binding site of the NCAM expressed on L cells. These results provide evidence that homophilic binding is the main mechanism by which NCAM becomes redistributed to intercellular contacts. They also implicate a role for other Ig-like domains in the accumulation of NCAM at cell–cell contacts.Key words: cell–cell adhesion, adhesion molecule, NCAM, homophilic binding, surface distribution.


2016 ◽  
Vol 119 (suppl_1) ◽  
Author(s):  
Jie Liu ◽  
Yanmei Qi ◽  
Shu-Chan Hsu ◽  
Siavash Saadat ◽  
Saum Rahimi ◽  
...  

Cellular repressor of E1A-stimulated genes 1 (CREG1) is a 24 kD glycoprotein essential for early embryonic development. Our immunofluorescence studies revealed that CREG1 is highly expressed at myocyte junctions in both embryonic and adult hearts. To explore it role in cardiomyogenesis, we employed gain- and loss-of-function analyses demonstrating that CREG1 is required for the differentiation of mouse embryonic stem (ES) cell into cohesive myocardium-like structures. Chimeric cultures of wild-type and CREG1 knockout ES cells expressing cardiac-specific reporters showed that the cardiomyogenic effect of CREG1 is cell autonomous. Furthermore, we identified a novel interaction between CREG1 and Sec8 of the exocyst complex, which tethers vesicles to the plasma membrane. Mutations of the amino acid residues D141 and P142 to alanine in CREG1 abolished its binding to Sec8. To address the role of the CREG1-Sec8 interaction in cardiomyogenesis, we rescued CREG1 knockout ES cells with wild-type and Sec8-binding mutant CREG1 and showed that CREG1 binding to Sec8 promotes cardiomyocyte differentiation and cohesion. Mechanistically, CREG1, Sec8 and N-cadherin all localize at cell-cell adhesion sites. CREG1 overexpression enhances the assembly of adherens and gap junctions. By contrast, its knockout inhibits the Sec8-N-cadherin interaction and induces their degradation. Finally, shRNA-mediated knockdown of Sec8 leads to cardiomyogenic defects similar to CREG1 knockout. These results suggest that the CREG1 binding to Sec8 enhances the assembly of intercellular junctions and promotes cardiomyogenesis.


1994 ◽  
Vol 5 (9) ◽  
pp. 977-988 ◽  
Author(s):  
S Kawaguchi ◽  
J M Bergelson ◽  
R W Finberg ◽  
M E Hemler

Chinese hamster ovary (CHO) cells transfected with the integrin alpha 2 subunit formed a stable VLA-2 heterodimer that mediated cell adhesion to collagen. Within CHO cells spread on collagen, but not fibronectin, wild-type alpha 2 subunit localized into focal adhesion complexes (FACs). In contrast, alpha 2 with a deleted cytoplasmic domain was recruited into FACs whether CHO cells were spread on collagen or fibronectin. Thus, as previously seen for other integrins, the alpha 2 cytoplasmic domain acts as a negative regulator, preventing indiscriminate integrin recruitment into FACs. Notably, ligand-independent localization of the VLA-2 alpha 2 subunit into FACs was partially prevented if only one or two amino acids were present in the alpha 2 cytoplasmic domain (beyond the conserved GFFKR motif) and was completely prevented by four to seven amino acids. The addition of two alanine residues (added to GFFKR) also partially prevented ligand-independent localization. In a striking inverse correlation, the same mutants showing increased ligand-independent recruitment into FACs exhibited diminished alpha 2-dependent adhesion to collagen. Thus, control of VLA-2 localization may be closely related to the suppression of cell adhesion to collagen. In contrast to FAC localization and collagen adhesion results, VLA-2-dependent binding and infection by echovirus were unaffected by either alpha 2 cytoplasmic domain deletion or exchange with other cytoplasmic domains.


2001 ◽  
Vol 114 (3) ◽  
pp. 577-587 ◽  
Author(s):  
M. Yanez-Mo ◽  
R. Tejedor ◽  
P. Rousselle ◽  
F. Sanchez-Madrid

The subcellular distribution of tetraspanin molecules and their functional relationship with integrins in cell-cell adhesion was studied in detail in different polarized epithelial cell models. CD9, CD81 and CD151 tetraspanins were localized at lateral cell-cell contact sites in a similar distribution to E-cadherin. Interestingly, CD9 was partially localized at the apical microvillae of Madin-Darby canine kidney cells forming multimolecular complexes distinct from those found on the basolateral membrane, suggesting the coexistence of differential tetraspanin webs with different subcellular localization. We found that tetraspanin-associated beta1 integrins at cell-to-cell contacts were in a low-affinity conformational state, and that their localization at intercellular contacts was independent of cadherin expression and adhesion. Furthermore, integrin-tetraspanin complexes were functionally relevant in cell-cell adhesion in a cadherin-independent manner, without requiring a conformational change of the integrin moiety. Nevertheless, the integrin alpha3beta1 was ligand-binding competent and this binding did not disrupt association to tetraspanins. Moreover, Chinese hamster ovary cells treated with anti-tetraspanin mAbs or activatory anti-beta1 integrin mAbs were able to develop tubule-like structures. Together, these data support tetraspanin association as a new regulatory mechanism of integrin function and suggest a role for tetraspanins-integrin complexes in providing the cell with the spatial cues necessary for their proper polarization.


2019 ◽  
Vol 30 (16) ◽  
pp. 1930-1937 ◽  
Author(s):  
Si Ming Pang ◽  
Shimin Le ◽  
Adam V. Kwiatkowski ◽  
Jie Yan

αT (Testes)-catenin, a critical factor regulating cell–cell adhesion in the heart, directly couples the cadherin-catenin complex to the actin cytoskeleton at the intercalated disk (ICD), a unique cell–cell junction that couples cardiomyocytes. Loss of αT-catenin in mice reduces plakophilin2 and connexin 43 recruitment to the ICD. Since αT-catenin is subjected to mechanical stretch during actomyosin contraction in cardiomyocytes, its activity could be regulated by mechanical force. To provide insight in how force regulates αT-catenin function, we investigated the mechanical stability of the putative, force-sensing middle (M) domain of αT-catenin and determined how force impacts vinculin binding to αT-catenin. We show that 1) physiological levels of force, <15 pN, are sufficient to unfold the three M domains; 2) the M1 domain that harbors the vinculin-binding site is unfolded at ∼6 pN; and 3) unfolding of the M1 domain is necessary for high-affinity vinculin binding. In addition, we quantified the binding kinetics and affinity of vinculin to the mechanically exposed binding site in M1 and observed that αT-catenin binds vinculin with low nanomolar affinity. These results provide important new insights into the mechanosensing properties of αT-catenin and how αT-catenin regulates cell–cell adhesion at the cardiomyocyte ICD.


1995 ◽  
Vol 108 (11) ◽  
pp. 3635-3644 ◽  
Author(s):  
J.B. Weitzman ◽  
A. Chen ◽  
M.E. Hemler

Various beta 1 integrins (VLA-2, VLA-3, VLA-4) have been suggested to bind directly to themselves or to each other, thus mediating cell-cell adhesion. Here we expressed the human alpha 2 and alpha 3 subunits in three different cell lines (human erythroleukemia K562, human rhabdomyosarcoma RD and Chinese hamster ovary CHO cells). Although cell surface alpha 2 beta 1 and alpha 3 beta 1 in the transfectants mediated adhesion to matrix ligands (collagen or laminin 5, respectively), in no case did we observe enhanced cell-cell adhesion. In the presence of a range of different divalent cation concentrations, stimulatory anti-beta 1 antibodies or anti-alpha 3 antibodies, VLA-2 and VLA-3 still did not appear to interact directly, through either heterophilic (i.e. VLA-3/VLA-2) or homophilic (i.e. VLA-3/VLA-3) mechanisms, to mediate cell-cell adhesion. Furthermore, in some but not all alpha 3 transfectants we observed an unexpected decrease in cell-cell adhesion, suggesting a novel anti-adhesive function. This inhibitory effect was not observed for alpha 2 transfection nor when the alpha 3 cytoplasmic tail was exchanged with that of another integrin alpha subunit. Finally, no evidence for VLA-4/VLA-4 mediated cell-cell adhesion was observed using alpha 4-transfected K562 and CHO cells. In conclusion, using many different combinations of cell lines, we found that cell-cell adhesion mediated by direct integrin/integrin interaction is not a widespread phenomenon, and is not observable in standard cell-cell adhesion assays. Furthermore, in some cell combinations, alpha 3 expression may actually cause diminished cell-cell adhesion.


2019 ◽  
Vol 94 (6) ◽  
Author(s):  
Ying Huang ◽  
Simon O. Owino ◽  
Corey J. Crevar ◽  
Donald M. Carter ◽  
Ted M. Ross

ABSTRACT Vaccination is the most effective way to prevent influenza virus infections. However, the diversity of antigenically distinct isolates is a challenge for vaccine development. In order to overcome the antigenic variability and improve the protective efficacy of influenza vaccines, our research group has pioneered the development of computationally optimized broadly reactive antigens (COBRA) for hemagglutinin (HA). Two candidate COBRA HA vaccines, P1 and X6, elicited antibodies with differential patterns of hemagglutination inhibition (HAI) activity against a panel of H1N1 influenza viruses. In order to better understand how these HA antigens elicit broadly reactive immune responses, epitopes in the Cb, Sa, or Sb antigenic sites of seasonal-like and pandemic-like wild-type or COBRA HA antigens were exchanged with homologous regions in the COBRA HA proteins to determine which regions and residues were responsible for the elicited antibody profile. Mice were vaccinated with virus-like particles (VLPs) expressing one of the 12 modified HA antigens (designated V1 to V12), COBRA HA antigens, or wild-type HA antigens. The elicited antisera was assessed for hemagglutination inhibition activity against a panel of historical seasonal-like and pandemic-like H1N1 influenza viruses. Primarily, the pattern of glycosylation sites and residues in the Sa antigenic region, around the receptor binding site (RBS), served as signatures for the elicitation of broadly reactive antibodies by these HA immunogens. Mice were vaccinated with VLPs expressing HA antigens that lacked a glycosylation site at residue 144 and a deleted lysine at position 147 residue were more effective at protecting against morbidity and mortality following infection with pandemic-like and seasonal-like H1N1 influenza viruses. IMPORTANCE There is a great need to develop broadly reactive or universal vaccines against influenza viruses. Advanced, next-generation hemagglutinin (HA) head-based vaccines that elicit protective antibodies against H1N1 influenza viruses have been developed. This study focused on understanding the specific amino acids around the receptor binding site (RBS) that were important in elicitation of these broadly reactive antibodies. Specific glycan sites and amino acids located at the tip of the HA molecule enhanced the elicitation of these broadly reactive antibodies. A better understanding of the HA structures around the RBS will lead to more effective HA immunogens.


mBio ◽  
2019 ◽  
Vol 10 (3) ◽  
Author(s):  
Yi-Pei Chen ◽  
Angelica M. Riestra ◽  
Anand Kumar Rai ◽  
Patricia J. Johnson

ABSTRACT Trichomonas vaginalis, a prevalent sexually transmitted parasite, adheres to and induces cytolysis of human mucosal epithelial cells. We have characterized a hypothetical protein, TVAG_393390, with predicted tertiary structure similar to that of mammalian cadherin proteins involved in cell-cell adherence. TVAG_393390, renamed cadherin-like protein (CLP), contains a calcium-binding site at a position conserved in cadherins. CLP is surface localized, and its mRNA and protein levels are significantly upregulated upon parasite adherence to host cells. To test the roles of CLP and its calcium-binding dependency during host cell adherence, we first demonstrated that wild-type CLP (CLP) binds calcium with a high affinity, whereas the calcium-binding site mutant protein (CLP-mut) does not. CLP and CLP-mut constructs were then used to overexpress these proteins in T. vaginalis. Parasites overexpressing CLP have ∼3.5-fold greater adherence to host cells than wild-type parasites, and this increased adherence is ablated by mutating the calcium-binding site. Additionally, competition with recombinant CLP decreased parasite binding to host cells. We also found that overexpression of CLP induced parasite aggregation which was further enhanced in the presence of calcium, whereas CLP-mut overexpression did not affect aggregation. Lastly, parasites overexpressing wild-type CLP induced killing of host cells ∼2.35-fold, whereas parasites overexpressing CLP-mut did not have this effect. These analyses describe the first parasitic CLP and demonstrate a role for this protein in mediating parasite-parasite and host-parasite interactions. T. vaginalis CLP may represent convergent evolution of a parasite protein that is functionally similar to the mammalian cell adhesion protein cadherin, which contributes to parasite pathogenesis. IMPORTANCE The adherence of pathogens to host cells is critical for colonization of the host and establishing infection. Here we identify a protein with no known function that is more abundant on the surface of parasites that are better at binding host cells. To interrogate a predicted function of this protein, we utilized bioinformatic protein prediction programs which allowed us to uncover the first cadherin-like protein (CLP) found in a parasite. Cadherin proteins are conserved metazoan proteins with central roles in cell-cell adhesion, development, and tissue structure maintenance. Functional characterization of this CLP from the unicellular parasite Trichomonas vaginalis demonstrated that the protein mediates both parasite-parasite and parasite-host adherence, which leads to an enhanced killing of host cells by T. vaginalis. Our findings demonstrate the presence of CLPs in unicellular pathogens and identify a new host cell binding protein family in a human-infective parasite.


1997 ◽  
Vol 139 (4) ◽  
pp. 1047-1059 ◽  
Author(s):  
Kenji Takaishi ◽  
Takuya Sasaki ◽  
Hirokazu Kotani ◽  
Hideo Nishioka ◽  
Yoshimi Takai

The Rho small G protein family, consisting of the Rho, Rac, and Cdc42 subfamilies, regulates various cell functions, such as cell shape change, cell motility, and cytokinesis, through reorganization of the actin cytoskeleton. We show here that the Rac and Rho subfamilies furthermore regulate cell–cell adhesion. We prepared MDCK cell lines stably expressing each of dominant active mutants of RhoA (sMDCK-RhoDA), Rac1 (sMDCK-RacDA), and Cdc42 (sMDCK-Cdc42DA) and dominant negative mutants of Rac1 (sMDCK-RacDN) and Cdc42 (sMDCK-Cdc42DN) and analyzed cell adhesion in these cell lines. The actin filaments at the cell–cell adhesion sites markedly increased in sMDCK-RacDA cells, whereas they apparently decreased in sMDCK-RacDN cells, compared with those in wild-type MDCK cells. Both E-cadherin and β-catenin, adherens junctional proteins, at the cell–cell adhesion sites also increased in sMDCK-RacDA cells, whereas both of them decreased in sMDCK-RacDN cells. The detergent solubility assay indicated that the amount of detergent-insoluble E-cadherin increased in sMDCK-RacDA cells, whereas it slightly decreased in sMDCK-RacDN cells, compared with that in wild-type MDCK cells. In sMDCK-RhoDA, -Cdc42DA, and -Cdc42DN cells, neither of these proteins at the cell–cell adhesion sites was apparently affected. ZO-1, a tight junctional protein, was not apparently affected in any of the transformant cell lines. Electron microscopic analysis revealed that sMDCK-RacDA cells tightly made contact with each other throughout the lateral membranes, whereas wild-type MDCK and sMDCK-RacDN cells tightly and linearly made contact at the apical area of the lateral membranes. These results suggest that the Rac subfamily regulates the formation of the cadherin-based cell– cell adhesion. Microinjection of C3 into wild-type MDCK cells inhibited the formation of both the cadherin-based cell–cell adhesion and the tight junction, but microinjection of C3 into sMDCK-RacDA cells showed little effect on the localization of the actin filaments and E-cadherin at the cell–cell adhesion sites. These results suggest that the Rho subfamily is necessary for the formation of both the cadherin-based cell– cell adhesion and the tight junction, but not essential for the Rac subfamily-regulated, cadherin-based cell– cell adhesion.


Sign in / Sign up

Export Citation Format

Share Document