scholarly journals In vitro fusion of endocytic vesicles is inhibited by cyclin A-cdc2 kinase.

1993 ◽  
Vol 4 (5) ◽  
pp. 541-553 ◽  
Author(s):  
P G Woodman ◽  
J P Adamczewski ◽  
T Hunt ◽  
G Warren

Receptor-mediated endocytosis and recycling are inhibited in mitotic mammalian cells, and previous studies have shown that inhibition of endocytic vesicle fusion in vitro occurs via cyclin B-cdc2 kinase. To test for the ability of cyclin A-cdc2 kinase to inhibit endocytic vesicle fusion, we employed recombinant cyclin A proteins. Addition of cyclin A to interphase extracts activated a histone kinase and markedly reduced the efficiency of endocytic vesicle fusion. By a number of criteria, inhibition of fusion was shown to be due to the action of cyclin A, via the mitosis-specific cdc2 kinase, and not an indirect effect through cyclin B. Two-stage incubations were used to demonstrate that at least one target of cyclin A-cdc2 kinase is a cytosolic component of the fusion apparatus. Reconstitution experiments showed that this component was also modified in mitotic cytosols and was unaffected by N-ethyl maleimide treatment.

1998 ◽  
Vol 111 (12) ◽  
pp. 1751-1757 ◽  
Author(s):  
A. Abrieu ◽  
T. Brassac ◽  
S. Galas ◽  
D. Fisher ◽  
J.C. Labbe ◽  
...  

We have investigated whether Plx1, a kinase recently shown to phosphorylate cdc25c in vitro, is required for activation of cdc25c at the G2/M-phase transition of the cell cycle in Xenopus. Using immunodepletion or the mere addition of an antibody against the C terminus of Plx1, which suppressed its activation (not its activity) at G2/M, we show that Plx1 activity is required for activation of cyclin B-cdc2 kinase in both interphase egg extracts receiving recombinant cyclin B, and cycling extracts that spontaneously oscillate between interphase and mitosis. Furthermore, a positive feedback loop allows cyclin B-cdc2 kinase to activate Plx1 at the G2/M-phase transition. In contrast, activation of cyclin A-cdc2 kinase does not require Plx1 activity, and cyclin A-cdc2 kinase fails to activate Plx1 and its consequence, cdc25c activation in cycling extracts.


1993 ◽  
Vol 4 (1) ◽  
pp. 79-92 ◽  
Author(s):  
L Connell-Crowley ◽  
M J Solomon ◽  
N Wei ◽  
J W Harper

p33cdk2 is a serine-threonine protein kinase that associates with cyclins A, D, and E and has been implicated in the control of the G1/S transition in mammalian cells. Recent evidence indicates that cyclin-dependent kinase 2 (Cdk2), like its homolog Cdc2, requires cyclin binding and phosphorylation (of threonine-160) for activation in vivo. However, the extent to which mechanistic details of the activation process are conserved between Cdc2 and Cdk2 is unknown. We have developed bacterial expression and purification systems for Cdk2 and cyclin A that allow mechanistic studies of the activation process to be performed in the absence of cell extracts. Recombinant Cdk2 is essentially inactive as a histone H1 kinase (< 4 x 10(-5) pmol phosphate transferred.min-1 x microgram-1 Cdk2). However, in the presence of equimolar cyclin A, the specific activity is approximately 16 pmol.mon-1 x microgram-1, 4 x 10(5)-fold higher than Cdk2 alone. Mutation of T160 in Cdk2 to either alanine or glutamic acid had little impact on the specific activity of the Cdk2/cyclin A complex: the activity of Cdk2T160E was indistinguishable from Cdk2, whereas that of Cdk2T160A was reduced by five-fold. To determine if the Cdk2/cyclin A complex could be activated further by phosphorylation of T160, complexes were treated with Cdc2 activating kinase (CAK), purified approximately 12,000-fold from Xenopus eggs. This treatment resulted in an 80-fold increase in specific activity. This specific activity is comparable with that of the Cdc2/cyclin B complex after complete activation by CAK (approximately 1600 pmol.mon-1 x microgram-1). Neither Cdk2T160A/cyclin A nor Cdk2T160E/cyclin A complexes were activated further by treatment with CAK. In striking contrast with cyclin A, cyclin B did not directly activate Cdk2. However, both Cdk2/cyclin A and Cdk2/cyclin B complexes display similar activity after activation by CAK. For the Cdk2/cyclin A complex, both cyclin binding and phosphorylation contribute significantly to activation, although the energetic contribution of cyclin A binding is greater than that of T160 phosphorylation by approximately 5 kcal/mol. The potential significance of direct activation of Cdk2 by cyclins with respect to regulation of cell cycle progression is discussed.


1992 ◽  
Vol 118 (5) ◽  
pp. 1109-1120 ◽  
Author(s):  
A Devault ◽  
D Fesquet ◽  
J C Cavadore ◽  
A M Garrigues ◽  
J C Labbé ◽  
...  

We have produced human cyclin A in Escherichia coli and investigated how it generates H1 kistone kinase activity when added to cyclin-free extracts prepared from parthenogenetically activated Xenopus eggs. Cyclin A was found to form a major complex with cdc2, and to bind cdk2/Eg1 only poorly. No lag phase was detected between the time when cyclin A was added and the time when H1 histone kinase activity was produced in frog extracts, even in the presence of 2 mM vanadate, which blocks cdc25 activity. Essentially identical results were obtained using extracts prepared from starfish oocytes. We conclude that formation of an active cyclin A-cdc2 kinase during early development escapes an inhibitory mechanism that delays formation of an active cyclin B-cdc2 kinase. This inhibitory mechanism involves phosphorylation of cdc2 on tyrosine 15. Okadaic acid (OA) activated cyclin B-cdc2 kinase and strongly reduced tyrosine phosphorylation of cyclin B-associated cdc2, even in the presence of vanadate. 6-dimethylamino-purine, a reported inhibitor of serine-threonine kinases, suppressed OA-dependent activation of cyclin B-cdc2 complexes. This indicates that the kinase(s) which phosphorylate(s) cdc2 on inhibitory sites can be inactivated by a phosphorylation event, itself antagonized by an OA-sensitive, most likely type 2A phosphatase. We also found that cyclin B- or cyclin A-cdc2 kinases can induce or accelerate conversion of the cyclin B-cdc2 complex from an inactive into an active kinase. Cyclin B-associated cdc2 does not undergo detectable phosphorylation on tyrosine in egg extracts containing active cyclin A-cdc2 kinase, even in the presence of vanadate. We propose that the active cyclin A-cdc2 kinase generated without a lag phase from neo-synthesized cyclin A and cdc2 may cause a rapid switch in the equilibrium of cyclin B-cdc2 complexes to the tyrosine-dephosphorylated and active form of cdc2 during early development, owing to strong inhibition of the cdc2-specific tyrosine kinase(s). This may explain why early cell cycles are so rapid in many species.


1995 ◽  
Vol 108 (7) ◽  
pp. 2599-2608 ◽  
Author(s):  
F. Girard ◽  
A. Fernandez ◽  
N. Lamb

Cyclins A and B are known to exhibit significant differences in their function, cellular distribution and timing of degradation at mitosis. On the basis of observations in marine invertebrates and Xenopus, it was proposed that cyclin destruction triggers cdc2 kinase inactivation and anaphase onset. However, this model has recently been questioned, both in Xenopus and in budding yeast. In this report, we present evidence for delayed degradation of both cyclins A and B1 in non-transformed mammalian cells. Indeed, by means of indirect immunofluorescence and confocal microscopy, we show that cyclins A and B1 are present up to anaphase in REF52, Hs68, human primary fibroblasts and NRK epithelial cells. In marked contrast, cyclin A is shown to be degraded within metaphase and cyclin B just at the transition to anaphase in HeLa and two transformed cell lines, derivatives of normal NRK and REF52. These results further support the notion that cyclin destruction might be not correlated with anaphase onset in normal cells and highlight a significant difference in the fate of mitotic cyclins between transformed and non-transformed cells.


1995 ◽  
Vol 15 (12) ◽  
pp. 7143-7151 ◽  
Author(s):  
K S Lee ◽  
Y L Yuan ◽  
R Kuriyama ◽  
R L Erikson

PLK (STPK13) encodes a murine protein kinase closely related to those encoded by the Drosophila melanogaster polo gene and the Saccharomyces cerevisiae CDC5 gene, which are required for normal mitotic and meiotic divisions. Affinity-purified antibody generated against the C-terminal 13 amino acids of Plk specifically recognizes a single polypeptide of 66 kDa in MELC, NIH 3T3, and HeLa cellular extracts. The expression levels of both poly(A)+ PLK mRNA and its encoded protein are most abundant about 17 h after serum stimulation of NIH 3T3 cells. Plk protein begins to accumulate at the S/G2 boundary and reaches the maximum level at the G2/M boundary in continuously cycling cells. Concurrent with cyclin B-associated cdc2 kinase activity, Plk kinase activity sharply peaks at the onset of mitosis. Plk enzymatic activity gradually decreases as M phase proceeds but persists longer than cyclin B-associated cdc2 kinase activity. Plk is localized to the area surrounding the chromosomes in prometaphase, appears condensed as several discrete bands along the spindle axis at the interzone in anaphase, and finally concentrates at the midbody during telophase and cytokinesis. Plk and CHO1/mitotic kinesin-like protein 1 (MKLP-1), which induces microtubule bundling and antiparallel movement in vitro, are colocalized during late M phase. In addition, CHO1/MKLP-1 appears to interact with Plk in vivo and to be phosphorylated by Plk-associated kinase activity in vitro.


1996 ◽  
Vol 109 (5) ◽  
pp. 1071-1079 ◽  
Author(s):  
C. Jones ◽  
C. Smythe

The entry into mitosis is dependent on the activation of mitotic forms of cdc2 kinase. In many cell types, cyclin A-associated kinase activity peaks just prior to that of cyclin B, although the precise role of cyclin A-associated kinase in the entry into mitosis is still unclear. Previous work has suggested that while cyclin B is capable of triggering cyclin destruction in Xenopus cell-free systems, cyclin A-associated kinase is not able to support this function. Here we have expressed a full-length human cyclin A in Escherichia coli and purified the protein to homogeneity by virtue of an N-terminal histidine tag. We have found that when added to Xenopus cell-free extracts free of cyclin B and incapable of protein synthesis, the temporal pattern of cyclin A-associated cdc2 kinase activity showed distinct differences that were dependent on the concentration of cyclin A added. When cyclin A was added to a concentration that generated levels of cdc2 kinase activity capable of inducing nuclear envelope breakdown, the histone H1 kinase activity profile was bi-phasic, consisting of an activation phase followed by an inactivation phase. Inactivation was found to be due to cyclin destruction, which was prevented by mos protein. Cyclin destruction was followed by nuclear reassembly and an additional round of DNA replication, indicating that there is no protein synthesis requirement for DNA replication in this embryonic system. It has been suggested that the evolutionary recruitment of cyclin A into an S phase function may have necessitated the loss of an original mitotic ability to activate the cyclin destruction pathway. The results presented here indicate that cyclin A has not lost the ability to activate its own destruction and that cyclin A-mediated activation of the cyclin destruction pathway permitted destruction of cyclin B1 as well as cyclin A, indicating that there are not distinct cyclin A and cyclin B destruction pathways. Thus the ordered progression of the cell cycle requires the careful titration of cyclin. A concentration in order to avoid activation of the cyclin destruction pathway before sufficient active cyclin B/cdc2 kinase has accumulated.


Nature ◽  
1989 ◽  
Vol 342 (6252) ◽  
pp. 942-945 ◽  
Author(s):  
Teppo Tuomikoski ◽  
Marie-Anne Felix ◽  
Marcel Dorée ◽  
Jean Gruenberg

1998 ◽  
Vol 111 (6) ◽  
pp. 833-841 ◽  
Author(s):  
P.D. Lampe ◽  
W.E. Kurata ◽  
B.J. Warn-Cramer ◽  
A.F. Lau

The gap junction protein connexin43 is a phosphoprotein that typically migrates as three bands (nonphosphorylated, P1 and P2) during polyacrylamide gel electrophoresis. The electrophoretic mobility of connexin43 from mitotic cells was distinctly reduced to a form (P3) that migrated slower than P2 from Rat1 cells prepared by shakeoff of nocodazole-treated and untreated cultures. Mitotic FT210 cells, which contain a temperature-sensitive mutation in the p34(cdc2) kinase, showed abundant levels of the P3 connexin43 when maintained at the permissive temperature where p34(cdc2) is active. In contrast, nocodozole-treated FT210 cells grown at the nonpermissive temperature did not contain P3 connexin43. These results indicated that generation of the P3 connexin43 was dependent upon active p34(cdc2)/cyclin B kinase. Although the p34(cdc2)kinase phosphorylated connexin43 in vitro on peptides containing serine 255, the major phosphotryptic peptides in P3 connexin43 from mitotic cells appeared to be the consequence of another protein kinase(s), which may be activated by the p34(cdc2)/cyclin B kinase. The P3 connexin43 exhibited a marked redistribution from cell-cell plasma membrane interfaces to multiple, distinctly stained cytoplasmic structures. These events may be part of the dramatic structural changes observed in mitotic cells undergoing cell rounding and cytokinesis. Results of initial studies using inhibitors of protein degradative and synthetic pathways suggested the likelihood that protein degradation and synthesis participate in the disappearance of the P3 connexin43 and restoration of the pattern of connexin43 isoforms observed in nonmitotic cells.


1993 ◽  
Vol 104 (3) ◽  
pp. 873-881
Author(s):  
F.A. Suprynowicz

Inactivation of the cyclin-p34cdc2 protein kinase complex is a major requirement for anaphase onset and exit from mitosis. To facilitate identification of specific molecules that regulate this event in mammalian cells, I have developed a cell-free assay in which cdc2 kinase associated with a chromosomal fraction from metaphase tissue culture cells is inactivated by a cell-cycle-regulated cytosolic system. In vitro kinase inactivation requires ATP, Mg2+ and the dephosphorylation of one or more sites in the chromosomal fraction by protein phosphatase 1 and/or 2A. Cyclin B is destroyed during inactivation, while the level of p34cdc2 remains constant. Ammonium sulfate fractionation resolves the cytosolic inactivating system into at least two distinct protein components that are both required for inactivation and are differentially regulated during mitosis.


1991 ◽  
Vol 11 (8) ◽  
pp. 3860-3867
Author(s):  
T Izumi ◽  
J L Maller

The cdc2 kinase and B-type cyclins are known to be components of maturation- or M-phase-promoting factor (MPF). Phosphorylation of cyclin B has been reported previously and may regulate entry into and exit from mitosis and meiosis. To investigate the role of cyclin B phosphorylation, we replaced putative cdc2 kinase phosphorylation sites in Xenopus cyclins B1 and B2 by using oligonucleotide site-directed mutagenesis. We found that Ser-90 of cyclin B2 and Ser-94 or Ser-96 of cyclin B1 are the main phosphorylation sites both in functional Xenopus egg extracts and after phosphorylation with purified MPF in vitro. Microtubule-associated protein (MAP) kinase from Xenopus eggs phosphorylated cyclin B1 significantly at Ser-94 or Ser-96, whereas it was largely inactive against cyclin B2. The substitutions that ablated phosphorylation at these sites, however, resulted in no functional differences between mutant and wild-type cyclin, as judged by the kinetics of M-phase degradation, induction of mitosis in egg extracts, or induction of oocyte maturation. These results indicate that the phosphorylation of Xenopus B-type cyclins by cdc2 kinase or MAP kinase is not required for the hallmark functions of cyclin.


Sign in / Sign up

Export Citation Format

Share Document