Inactivation of cdc2 kinase during mitosis requires regulated and constitutive proteins in a cell-free system

1993 ◽  
Vol 104 (3) ◽  
pp. 873-881
Author(s):  
F.A. Suprynowicz

Inactivation of the cyclin-p34cdc2 protein kinase complex is a major requirement for anaphase onset and exit from mitosis. To facilitate identification of specific molecules that regulate this event in mammalian cells, I have developed a cell-free assay in which cdc2 kinase associated with a chromosomal fraction from metaphase tissue culture cells is inactivated by a cell-cycle-regulated cytosolic system. In vitro kinase inactivation requires ATP, Mg2+ and the dephosphorylation of one or more sites in the chromosomal fraction by protein phosphatase 1 and/or 2A. Cyclin B is destroyed during inactivation, while the level of p34cdc2 remains constant. Ammonium sulfate fractionation resolves the cytosolic inactivating system into at least two distinct protein components that are both required for inactivation and are differentially regulated during mitosis.

mBio ◽  
2018 ◽  
Vol 9 (2) ◽  
Author(s):  
Aaron S. Dhanda ◽  
A. Wayne Vogl ◽  
Sharifah E. Albraiki ◽  
Carol A. Otey ◽  
Moriah R. Beck ◽  
...  

ABSTRACTPalladin is an important component of motile actin-rich structures and nucleates branched actin filament arraysin vitro. Here we examine the role of palladin duringListeria monocytogenesinfections in order to tease out novel functions of palladin. We show that palladin is co-opted byL. monocytogenesduring its cellular entry and intracellular motility. Depletion of palladin resulted in shorter and misshapen comet tails, and when actin- or VASP-binding mutants of palladin were overexpressed in cells, comet tails disintegrated or became thinner. Comet tail thinning resulted in parallel actin bundles within the structures. To determine whether palladin could compensate for the Arp2/3 complex, we overexpressed palladin in cells treated with the Arp2/3 inhibitor CK-666. In treated cells, bacterial motility could be initiated and maintained when levels of palladin were increased. To confirm these findings, we utilized a cell line depleted of multiple Arp2/3 complex subunits. Within these cells,L. monocytogenesfailed to generate comet tails. When palladin was overexpressed in this Arp2/3 functionally null cell line, the ability ofL. monocytogenesto generate comet tails was restored. Using purified protein components, we demonstrate thatL. monocytogenesactin clouds and comet tails can be generated (in a cell-free system) by palladin in the absence of the Arp2/3 complex. Collectively, our results demonstrate that palladin can functionally replace the Arp2/3 complex during bacterial actin-based motility.IMPORTANCEStructures containing branched actin filaments require the Arp2/3 complex. One of the most commonly used systems to study intracellular movement generated by Arp2/3-based actin motility exploits actin-rich comet tails made byListeria. Using these infections together with live imaging and cell-free protein reconstitution experiments, we show that another protein, palladin, can be used in place of Arp2/3 to form actin-rich structures. Additionally, we show that palladin is needed for the structural integrity of comet tails as its depletion or mutation of critical regions causes dramatic changes to comet tail organization. These findings are the first to identify a protein that can functionally replace the Arp2/3 complex and have implications for all actin-based structures thought to exclusively use that complex.


1994 ◽  
Vol 299 (1) ◽  
pp. 19-22 ◽  
Author(s):  
J L Mitchell ◽  
G G Judd ◽  
A Bareyal-Leyser ◽  
S Y Ling

Antizyme, a spermidine-induced protein that binds and stimulates ornithine decarboxylase degradation, is now shown also to mediate the rapid feedback inhibition of polyamine uptake into mammalian cells. Using a cell line (HZ7) transfected with truncated antizyme cDNA, and mutant ornithine decarboxylase cell lines, we demonstrate that this newly discovered action of antizyme is distinct from its role in modulating polyamine biosynthesis.


2006 ◽  
Vol 26 (10) ◽  
pp. 3752-3763 ◽  
Author(s):  
Peter H. Thorpe ◽  
Vanessa A. Marrero ◽  
Margaret H. Savitzky ◽  
Ivana Sunjevaric ◽  
Tom C. Freeman ◽  
...  

ABSTRACT The RAD52 gene is essential for homologous recombination in the yeast Saccharomyces cerevisiae. RAD52 is the archetype in an epistasis group of genes essential for DNA damage repair. By catalyzing the replacement of replication protein A with Rad51 on single-stranded DNA, Rad52 likely promotes strand invasion of a double-stranded DNA molecule by single-stranded DNA. Although the sequence and in vitro functions of mammalian RAD52 are conserved with those of yeast, one difference is the presence of introns and consequent splicing of the mammalian RAD52 pre-mRNA. We identified two novel splice variants from the RAD52 gene that are expressed in adult mouse tissues. Expression of these splice variants in tissue culture cells elevates the frequency of recombination that uses a sister chromatid template. To characterize this dominant phenotype further, the RAD52 gene from the yeast Saccharomyces cerevisiae was truncated to model the mammalian splice variants. The same dominant sister chromatid recombination phenotype seen in mammalian cells was also observed in yeast. Furthermore, repair from a homologous chromatid is reduced in yeast, implying that the choice of alternative repair pathways may be controlled by these variants. In addition, a dominant DNA repair defect induced by one of the variants in yeast is suppressed by overexpression of RAD51, suggesting that the Rad51-Rad52 interaction is impaired.


2007 ◽  
Vol 403 (3) ◽  
pp. 451-461 ◽  
Author(s):  
Sandrine Pacquelet ◽  
Jennifer L. Johnson ◽  
Beverly A. Ellis ◽  
Agnieszka A. Brzezinska ◽  
William S. Lane ◽  
...  

Exposure of neutrophils to LPS (lipopolysaccharide) triggers their oxidative response. However, the relationship between the signalling downstream of TLR4 (Toll-like receptor 4) after LPS stimulation and the activation of the oxidase remains elusive. Phosphorylation of the cytosolic factor p47phox is essential for activation of the NADPH oxidase. In the present study, we examined the hypothesis that IRAK-4 (interleukin-1 receptor-associated kinase-4), the main regulatory kinase downstream of TLR4 activation, regulates the NADPH oxidase through phosphorylation of p47phox. We show that p47phox is a substrate for IRAK-4. Unlike PKC (protein kinase C), IRAK-4 phosphorylates p47phox not only at serine residues, but also at threonine residues. Target residues were identified by tandem MS, revealing a novel threonine-rich regulatory domain. We also show that p47phox is phosphorylated in granulocytes in response to LPS stimulation. LPS-dependent phosphorylation of p47phox was enhanced by the inhibition of p38 MAPK (mitogen-activated protein kinase), confirming that the kinase operates upstream of p38 MAPK. IRAK-4-phosphorylated p47phox activated the NADPH oxidase in a cell-free system, and IRAK-4 overexpression increased NADPH oxidase activity in response to LPS. We have shown that endogenous IRAK-4 interacts with p47phox and they co-localize at the plasma membrane after LPS stimulation, using immunoprecipitation assays and immunofluorescence microscopy respectively. IRAK-4 was activated in neutrophils in response to LPS stimulation. We found that Thr133, Ser288 and Thr356, targets for IRAK-4 phosphorylation in vitro, are also phosphorylated in endogenous p47phox after LPS stimulation. We conclude that IRAK-4 phosphorylates p47phox and regulates NADPH oxidase activation after LPS stimulation.


2010 ◽  
Vol 17 (5) ◽  
pp. 784-792 ◽  
Author(s):  
R. Zichel ◽  
A. Mimran ◽  
A. Keren ◽  
A. Barnea ◽  
I. Steinberger-Levy ◽  
...  

ABSTRACT Botulinum toxins produced by the anaerobic bacterium Clostridium botulinum are the most potent biological toxins in nature. Traditionally, people at risk are immunized with a formaldehyde-inactivated toxin complex. Second generation vaccines are based on the recombinant carboxy-terminal heavy-chain (Hc) fragment of the neurotoxin. However, the materialization of this approach is challenging, mainly due to the high AT content of clostridial genes. Herein, we present an alternative strategy in which the native genes encoding Hc proteins of botulinum toxins A, B, and E were used to express the recombinant Hc fragments in a cell-free expression system. We used the unique property of this open system to introduce different combinations of chaperone systems, protein disulfide isomerase (PDI), and reducing/oxidizing environments directly to the expression reaction. Optimized expression conditions led to increased production of soluble Hc protein, which was successfully scaled up using a continuous exchange (CE) cell-free system. Hc proteins were produced at a concentration of more than 1 mg/ml and purified by one-step Ni+ affinity chromatography. Mice immunized with three injections containing 5 μg of any of the in vitro-expressed, alum-absorbed, Hc vaccines generated a serum enzyme-linked immunosorbent assay (ELISA) titer of 105 against the native toxin complex, which enabled protection against a high-dose toxin challenge (103 to 106 mouse 50% lethal dose [MsLD50]). Finally, immunization with a trivalent HcA, HcB, and HcE vaccine protected mice against the corresponding trivalent 105 MsLD50 toxin challenge. Our results together with the latest developments in scalability of the in vitro protein expression systems offer alternative routes for the preparation of botulinum vaccine.


1989 ◽  
Vol 94 (3) ◽  
pp. 449-462
Author(s):  
J. Nakagawa ◽  
G.T. Kitten ◽  
E.A. Nigg

We describe a cell-free system for studying mitotic reorganization of nuclear structure. The system utilizes soluble extracts prepared from metaphase-arrested somatic chicken cells and supports both the disassembly and subsequent partial reassembly of exogenous nuclei. By fluorescence microscopy, biochemical fractionation, protein phosphorylation assays and electron microscopy, we show that chicken embryonic nuclei incubated in extracts prepared from metaphase-arrested chicken hepatoma cells undergo nuclear envelope breakdown, lamina depolymerization and chromatin condensation. These prophase-like events are strictly dependent on ATP and do not occur when nuclei are incubated in interphase extracts. Compared to interphase extracts, metaphase extracts show increased kinase activities toward a number of nuclear protein substrates, including lamins and histone H1; moreover, they specifically contain four soluble phosphoproteins of Mr 38,000, 75,000, 95,000 and 165,000. Following disassembly of exogenous nuclei in metaphase extracts, telophase-like reassembly of a nuclear lamina and re-formation of nuclear membranes around condensed chromatin can be induced by depletion of ATP from the extract. We anticipate that this reversible cell-free system will contribute to the identification and characterization of factors involved in regulatory and mechanistic aspects of mitosis.


1995 ◽  
Vol 108 (7) ◽  
pp. 2599-2608 ◽  
Author(s):  
F. Girard ◽  
A. Fernandez ◽  
N. Lamb

Cyclins A and B are known to exhibit significant differences in their function, cellular distribution and timing of degradation at mitosis. On the basis of observations in marine invertebrates and Xenopus, it was proposed that cyclin destruction triggers cdc2 kinase inactivation and anaphase onset. However, this model has recently been questioned, both in Xenopus and in budding yeast. In this report, we present evidence for delayed degradation of both cyclins A and B1 in non-transformed mammalian cells. Indeed, by means of indirect immunofluorescence and confocal microscopy, we show that cyclins A and B1 are present up to anaphase in REF52, Hs68, human primary fibroblasts and NRK epithelial cells. In marked contrast, cyclin A is shown to be degraded within metaphase and cyclin B just at the transition to anaphase in HeLa and two transformed cell lines, derivatives of normal NRK and REF52. These results further support the notion that cyclin destruction might be not correlated with anaphase onset in normal cells and highlight a significant difference in the fate of mitotic cyclins between transformed and non-transformed cells.


1981 ◽  
Vol 1 (7) ◽  
pp. 635-651
Author(s):  
D C Lee ◽  
R G Roeder

We examined the transcription of a variety of adenovirus type 2 genes in a cell-free system containing purified ribonucleic acid polymerase II and a crude extract from cultured human cells. The early EIA, EIB, EIII, and EIV genes and the intermediate polypeptide IX gene, all of which contain a recognizable TATAA sequence upstream from the cap site, were actively transcribed in vitro, albeit with apparently different efficiencies, whereas the early EII (map position 74.9) and IVa2 genes, both of which lack a TATAA sequence, were not actively transcribed. A reverse transcriptase-primer extension analysis showed that the 5' ends of the in vitro transcripts were identical to those of the corresponding in vivo ribonucleic acids and that, in those instances where initiation was heterogeneous in vivo, a similar kind of heterogeneity was observed in the cell-free system. Transcription of the polypeptide IX gene indicated that this transcript was not terminated at, or processed to, the polyadenylic acid addition site in vitro. We also failed to observe, using the in vitro system, any indication of transcriptional regulation based on the use of adenovirus type 2-infected cell extracts.


1990 ◽  
Vol 10 (9) ◽  
pp. 4456-4465
Author(s):  
S M Carroll ◽  
P Narayan ◽  
F M Rottman

N6-methyladenosine (m6A) residues occur at internal positions in most cellular and viral RNAs; both heterogeneous nuclear RNA and mRNA are involved. This modification arises by enzymatic transfer of a methyl group from S-adenosylmethionine to the central adenosine residue in the canonical sequence G/AAC. Thus far, m6A has been mapped to specific locations in eucaryotic mRNA and viral genomic RNA. We have now examined an intron-specific sequence of a modified bovine prolactin precursor RNA for the presence of this methylated nucleotide by using both transfected-cell systems and a cell-free system capable of methylating mRNA transcripts in vitro. The results indicate the final intron-specific sequence (intron D) of a prolactin RNA molecule does indeed possess m6A residues. When mapped to specific T1 oligonucleotides, the predominant site of methylation was found to be within the consensus sequence AGm6ACU. The level of m6A at this site is nonstoichiometric; approximately 24% of the molecules are modified in vivo. Methylation was detected at markedly reduced levels at other consensus sites within the intron but not in T1 oligonucleotides which do not contain either AAC or GAC consensus sequences. In an attempt to correlate mRNA methylation with processing, stably transfected CHO cells expressing augmented levels of bovine prolactin were treated with neplanocin A, an inhibitor of methylation. Under these conditions, the relative steady-state levels of the intron-containing nuclear precursor increased four to six times that found in control cells.


1987 ◽  
Author(s):  
J C Fredenburgh ◽  
D Collen ◽  
M E Nesheim

The profibrinolytic activity of human activated protein C (APC) was studied in a cell-free system using human plasma. Normal and Ba+* citrate adsorbed human plasmas were dialyzed against 150mM NaCl, 20mM Hepes, pH 7.4 and diluted to an A280 of 16. Reactions were initiated by the addition of aliquots of plasma to cuvettes containing human melanoma tPA and human thrombin at final concentrations of 1 and 30nM, respectively. The effects of Ca+* and varying concentrations of APC on clotlysis times were examined by monitoring turbidity at 600nM while maintaining the temperature at 37°C. The lysis time, defined as the midpoint of turbidity change, was 128 min for normal plasma containing 10 mM Ca+* and showed progressive and saturable shortening to about 90 min at > 50nM APC. In the absence of Ca+*, lysis time was 55 min for normal plasma and did not shorten in response to APC. With Ba+* citrate adsorbed plasma, the lysis time was 82 min in the presence of 10mM Ca+*, and shortened to 42 min without Ca+*. APC had no effect on lysis time in Ba+* adsorbed plasma either with or without Ca+*. Both bovine and human APC were equally potent. Electrophoresis in DodSO4 and autoradiography of plasma samples containing 125I-labelled plasminogen indicated enhanced rates of plasminogen activation in the presence of APC. These data indicate that APC decreases lysis time in vitro at the level of plasminogen activation. This effect is dependent on Ca+* and may involve additional vitamin K-dependent protein ( s).


Sign in / Sign up

Export Citation Format

Share Document