scholarly journals Cell cycle regulation of the p34cdc2 inhibitory kinases.

1994 ◽  
Vol 5 (9) ◽  
pp. 989-1001 ◽  
Author(s):  
S Atherton-Fessler ◽  
F Liu ◽  
B Gabrielli ◽  
M S Lee ◽  
C Y Peng ◽  
...  

In cells of higher eukaryotic organisms the activity of the p34cdc2/cyclin B complex is inhibited by phosphorylation of p34cdc2 at two sites within its amino-terminus (threonine 14 and tyrosine 15). In this study, the cell cycle regulation of the kinases responsible for phosphorylating p34cdc2 on Thr14 and Tyr15 was examined in extracts prepared from both HeLa cells and Xenopus eggs. Both Thr14- and Tyr15- specific kinase activities were regulated in a cell cycle-dependent manner. The kinase activities were high throughout interphase and diminished coincident with entry of cells into mitosis. In HeLa cells delayed in G2 by the DNA-binding dye Hoechst 33342, Thr14- and Tyr15-specific kinase activities remained high, suggesting that a decrease in Thr14- and Tyr15- kinase activities may be required for entry of cells into mitosis. Similar cell cycle regulation was observed for the Thr14/Tyr15 kinase(s) in Xenopus egg extracts. These results indicate that activation of CDC2 and entry of cells into mitosis is not triggered solely by activation of the Cdc25 phosphatase but by the balance between Thr14/Tyr15 kinase and phosphatase activities. Finally, we have detected two activities capable of phosphorylating p34cdc2 on Thr14 and/or Tyr15 in interphase extracts prepared from Xenopus eggs. An activity capable of phosphorylating Tyr15 remained soluble after ultracentrifugation of interphase extracts whereas a second activity capable of phosphorylating both Thr14 and Tyr15 pelleted. The pelleted fraction contained activities that were detergent extractable and that phosphorylated p34cdc2 on both Thr14 and Tyr15. The Thr14- and Tyr15-specific kinase activities co-purified through three successive chromatographic steps indicating the presence of a dual-specificity protein kinase capable of acting on p34cdc2.

1990 ◽  
Vol 10 (7) ◽  
pp. 3847-3851
Author(s):  
C H McGowan ◽  
P Russell ◽  
S I Reed

The product of the CDC2Hs gene is the protein kinase subunit of the M-phase promoting factor, which is required for entry into mitosis. The activity of this kinase is regulated in a cell cycle-dependent manner by reversible phosphorylation and through association with other proteins. We report here that in HeLa cells, the abundance of the CDC2Hs mRNA and the rate of synthesis of the encoded protein, p34, vary in a cell cycle-dependent manner.


1996 ◽  
Vol 133 (3) ◽  
pp. 585-593 ◽  
Author(s):  
J Niclas ◽  
V J Allan ◽  
R D Vale

Cytoplasmic dynein is a minus end-directed microtubule motor that performs distinct functions in interphase and mitosis. In interphase, dynein transports organelles along microtubules, whereas in metaphase this motor has been implicated in mitotic spindle formation and orientation as well as chromosome segregation. The manner in which dynein activity is regulated during the cell cycle, however, has not been resolved. In this study, we have examined the mechanism by which organelle transport is controlled by the cell cycle in extracts of Xenopus laevis eggs. Here, we show that photocleavage of the dynein heavy chain dramatically inhibits minus end-directed organelle transport and that purified dynein restores this motility, indicating that dynein is the predominant minus end-directed membrane motor in Xenopus egg extracts. By measuring the amount of dynein associated with isolated membranes, we find that cytoplasmic dynein and its activator dynactin detach from the membrane surface in metaphase extracts. The sevenfold decrease in membrane-associated dynein correlated well with the eightfold reduction in minus end-directed membrane transport observed in metaphase versus interphase extracts. Although dynein heavy or intermediate chain phosphorylation did not change in a cell cycle-dependent manner, the dynein light intermediate chain incorporated approximately 12-fold more radiolabeled phosphate in metaphase than in interphase extracts. These studies suggest that cell cycle-dependent phosphorylation of cytoplasmic dynein may regulate organelle transport by modulating the association of this motor with membranes.


1999 ◽  
Vol 112 (23) ◽  
pp. 4281-4289 ◽  
Author(s):  
C. Regnard ◽  
E. Desbruyeres ◽  
P. Denoulet ◽  
B. Edde

Polyglutamylation is a posttranslational modification of tubulin that is very common in neurons and ciliated or flagellated cells. It was proposed to regulate the binding of microtubule associated proteins (MAPs) and molecular motors as a function of the length of the polyglutamyl side-chain. Though much less common, this modification of tubulin also occurs in proliferating cells like HeLa cells where it is associated with centrioles and with the mitotic spindle. Recently, we partially purified tubulin polyglutamylase from mouse brain and described its enzymatic properties. In this work, we focused on tubulin polyglutamylase activity from HeLa cells. Our results support the existence of a tubulin polyglutamylase family composed of several isozymic variants specific for alpha- or beta-tubulin subunits. In the latter case, the specificity probably also concerns the different beta-tubulin isotypes. Interestingly, we found that tubulin polyglutamylase activity is regulated in a cell cycle dependent manner and peaks in G(2)-phase while the level of glutamylated tubulin peaks in mitosis. Consistent results were obtained by treating the cells with hydroxyurea, nocodazole or taxotere. In particular, in mitotic cells, tubulin polyglutamylase activity was always low while glutamylation level was high. Finally, tubulin polyglutamylase activity and the level of glutamylated tubulin appeared to be inversely related. This paradox suggests a complex regulation of both tubulin polyglutamylase and the reverse deglutamylase activity.


1990 ◽  
Vol 10 (7) ◽  
pp. 3847-3851 ◽  
Author(s):  
C H McGowan ◽  
P Russell ◽  
S I Reed

The product of the CDC2Hs gene is the protein kinase subunit of the M-phase promoting factor, which is required for entry into mitosis. The activity of this kinase is regulated in a cell cycle-dependent manner by reversible phosphorylation and through association with other proteins. We report here that in HeLa cells, the abundance of the CDC2Hs mRNA and the rate of synthesis of the encoded protein, p34, vary in a cell cycle-dependent manner.


2019 ◽  
Author(s):  
Stefan Golfier ◽  
Thomas Quail ◽  
Hiroshi Kimura ◽  
Jan Brugués

AbstractChromatin undergoes a dramatic reorganization during the cell cycle1–3. In interphase, chromatin is organized into compartments and topological-associating domains (TADs) that are cell-type specific4–7, whereas in metaphase, chromosomes undergo large-scale compaction, leading to the loss of specific boundaries and the shutdown of transcription8–12. Loop extrusion by structural maintenance of chromosomes complexes (SMCs) has been proposed as a mechanism to organize chromatin in interphase and metaphase13–19. However, the requirements for chromatin organization in these cell phases are very different, and it is unknown whether loop extrusion dynamics and the complexes that extrude them also differ. Here, we used Xenopus egg extracts to reconstitute and image loop extrusion of single DNA molecules during the cell cycle. We show that loops form in both metaphase and interphase, but with distinct dynamic properties. Condensin extrudes asymmetric loops in metaphase, whereas cohesin extrudes symmetric loops in interphase. Our data show that loop extrusion is a general mechanism for the organization of DNA, with dynamic and structural properties that are molecularly regulated during the cell cycle.


eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Stefan Golfier ◽  
Thomas Quail ◽  
Hiroshi Kimura ◽  
Jan Brugués

Loop extrusion by structural maintenance of chromosomes (SMC) complexes has been proposed as a mechanism to organize chromatin in interphase and metaphase. However, the requirements for chromatin organization in these cell cycle phases are different, and it is unknown whether loop extrusion dynamics and the complexes that extrude DNA also differ. Here, we used Xenopus egg extracts to reconstitute and image loop extrusion of single DNA molecules during the cell cycle. We show that loops form in both metaphase and interphase, but with distinct dynamic properties. Condensin extrudes DNA loops non-symmetrically in metaphase, whereas cohesin extrudes loops symmetrically in interphase. Our data show that loop extrusion is a general mechanism underlying DNA organization, with dynamic and structural properties that are biochemically regulated during the cell cycle.


1999 ◽  
Vol 146 (6) ◽  
pp. 1265-1276 ◽  
Author(s):  
Stephen L. Rogers ◽  
Ryan L. Karcher ◽  
Joseph T. Roland ◽  
Alexander A. Minin ◽  
Walter Steffen ◽  
...  

Previously, we have shown that melanosomes of Xenopus laevis melanophores are transported along both microtubules and actin filaments in a coordinated manner, and that myosin V is bound to purified melanosomes (Rogers, S., and V.I. Gelfand. 1998. Curr. Biol. 8:161–164). In the present study, we have demonstrated that myosin V is the actin-based motor responsible for melanosome transport. To examine whether myosin V was regulated in a cell cycle-dependent manner, purified melanosomes were treated with interphase- or metaphase-arrested Xenopus egg extracts and assayed for in vitro motility along Nitella actin filaments. Motility of organelles treated with mitotic extract was found to decrease dramatically, as compared with untreated or interphase extract-treated melanosomes. This mitotic inhibition of motility correlated with the dissociation of myosin V from melanosomes, but the activity of soluble motor remained unaffected. Furthermore, we find that myosin V heavy chain is highly phosphorylated in metaphase extracts versus interphase extracts. We conclude that organelle transport by myosin V is controlled by a cell cycle-regulated association of this motor to organelles, and that this binding is likely regulated by phosphorylation of myosin V during mitosis.


2006 ◽  
Vol 16 (2) ◽  
pp. 199-209 ◽  
Author(s):  
Jean Schneikert ◽  
Annette Grohmann ◽  
Jürgen Behrens

1998 ◽  
Vol 111 (5) ◽  
pp. 557-572 ◽  
Author(s):  
C. Roghi ◽  
R. Giet ◽  
R. Uzbekov ◽  
N. Morin ◽  
I. Chartrain ◽  
...  

By differential screening of a Xenopus laevis egg cDNA library, we have isolated a 2,111 bp cDNA which corresponds to a maternal mRNA specifically deadenylated after fertilisation. This cDNA, called Eg2, encodes a 407 amino acid protein kinase. The pEg2 sequence shows significant identity with members of a new protein kinase sub-family which includes Aurora from Drosophila and Ipl1 (increase in ploidy-1) from budding yeast, enzymes involved in centrosome migration and chromosome segregation, respectively. A single 46 kDa polypeptide, which corresponds to the deduced molecular mass of pEg2, is immunodetected in Xenopus oocyte and egg extracts, as well as in lysates of Xenopus XL2 cultured cells. In XL2 cells, pEg2 is immunodetected only in S, G2 and M phases of the cell cycle, where it always localises to the centrosomal region of the cell. In addition, pEg2 ‘invades’ the microtubules at the poles of the mitotic spindle in metaphase and anaphase. Immunoelectron microscopy experiments show that pEg2 is located precisely around the pericentriolar material in prophase and on the spindle microtubules in anaphase. We also demonstrate that pEg2 binds directly to taxol stabilised microtubules in vitro. In addition, we show that the presence of microtubules during mitosis is not necessary for an association between pEg2 and the centrosome. Finally we show that a catalytically inactive pEg2 kinase stops the assembly of bipolar mitotic spindles in Xenopus egg extracts.


2021 ◽  
Author(s):  
Yuting Liu ◽  
Kehui Wang ◽  
Li Huang ◽  
Jicheng Zhao ◽  
Xinpeng Chen ◽  
...  

Centromere identity is defined by nucleosomes containing CENP-A, a histone H3 variant. The deposition of CENP-A at centromeres is tightly regulated in a cell-cycle-dependent manner. We previously reported that the spatiotemporal control of centromeric CENP-A incorporation is mediated by the phosphorylation of CENP-A Ser68. However, a recent report argued that Ser68 phosphoregulation is dispensable for accurate CENP-A loading. Here, we report that the substitution of Ser68 of endogenous CENP-A with either Gln68 or Glu68 severely impairs CENP-A deposition and cell viability. We also find that mice harboring the corresponding mutations are lethal. Together, these results indicate that the dynamic phosphorylation of Ser68 ensures cell-cycle-dependent CENP-A deposition and cell viability.


Sign in / Sign up

Export Citation Format

Share Document