scholarly journals Nitrogen-regulated Ubiquitination of the Gap1 Permease ofSaccharomyces cerevisiae

1998 ◽  
Vol 9 (6) ◽  
pp. 1253-1263 ◽  
Author(s):  
Jean-Yves Springael ◽  
Bruno André

Addition of ammonium ions to yeast cells growing on proline as the sole nitrogen source induces rapid inactivation and degradation of the general amino acid permease Gap1 through a process requiring the Npi1/Rsp5 ubiquitin (Ub) ligase. In this study, we show that NH4+induces endocytosis of Gap1, which is then delivered into the vacuole where it is degraded. This down-regulation is accompanied by increased conversion of Gap1 to ubiquitinated forms. Ubiquitination and subsequent degradation of Gap1 are impaired in thenpi1 strain. In this mutant, the amount of Npi1/Rsp5 Ub ligase is reduced >10-fold compared with wild-type cells. The C-terminal tail of Gap1 contains sequences, including a di-leucine motif, which are required for NH4+-induced internalization and degradation of the permease. We show here that mutant Gap1 permeases affected in these sequences still bind Ub. Furthermore, we provide evidence that only a small fraction of Gap1 is modified by Ub after addition of NH4+to mutants defective in endocytosis.

1999 ◽  
Vol 112 (9) ◽  
pp. 1375-1383 ◽  
Author(s):  
J.Y. Springael ◽  
J.M. Galan ◽  
R. Haguenauer-Tsapis ◽  
B. Andre

Addition of ammonium ions to yeast cells growing on proline as the sole nitrogen source induces internalization of the general amino acid permease Gap1p and its subsequent degradation in the vacuole. An essential step in this down-regulation is Gap1p ubiquitination through a process requiring the Npi1p/Rsp5p ubiquitin ligase. We show in this report that NPI2, a second gene required for NH4+-induced down-regulation of Gap1p, codes for the ubiquitin hydrolase Doa4p/Ubp4p/Ssv7p and that NH4+-induced Gap1p ubiquitination is strongly reduced in npi2 cells. The npi2 mutation results in substitution of an aromatic amino acid located in a 33-residue sequence shared by some ubiquitin hydrolases of the Ubp family. In this mutant, as in doa4(delta) cells, the amount of free monomeric ubiquitin is at least four times lower than in wild-type cells. Both ubiquitination and down-regulation of the permease can be restored in npi2 cells by over-expression of ubiquitin. In proline-grown wild-type and npi2/doa4 cells overproducing ubiquitin, Gap1p appears to be mono-ubiquitinated at two lysine acceptor sites. Addition of NH4+ triggers rapid poly-ubiquitination of Gap1p, the poly-ubiquitin chains being specifically formed by linkage through the lysine 63 residue of ubiquitin. Gap1p is thus ubiquitinated differently from the proteins targeted by ubiquitination for proteolysis by the proteasome, but in the same manner as the uracil permease, also subject to ubiquitin-dependent endocytosis. When poly-ubiquitination through Lys63 is blocked, the Gap1p permease still undergoes NH4+-induced down-regulation, but to a lesser extent.


1980 ◽  
Vol 192 (2) ◽  
pp. 659-664 ◽  
Author(s):  
J R Woodward ◽  
H L Kornberg

Cells of the wild-type yeast (Saccharomyces cerevisiae) strain Y185, grown under conditions that de-repress the formation of a general amino acid permease (‘Gap’) system, bind delta-N-chloroacetyl[1-(14)C]ornithine; L- and D-amino acid substrates of the general amino acid permease system protect against this binding. The protein responsible is released from the cells by homogenization or by preparation of protoplasts; it is not released by osmotic shock. This protein is virtually absent from the wild-type strain when it is grown under conditions that repress the general amino acid permease system, and is also absent from a Gap- mutant Y185-His3, selected by its resistance to D-amino acids. This mutant and repressed wild-type cells also fail to form a number of membrane proteins elaborated by de-repressed wild-type cells. It is possible that all these proteins are components of the general amino acid permease system.


1981 ◽  
Vol 196 (2) ◽  
pp. 531-536 ◽  
Author(s):  
J R Woodward ◽  
H L Kornberg

The general amino acid permease (‘Gap’) system of the wild-type yeast (Saccharomyces cerevisiae) strain Y185 is inhibited by the uptake and accumulation of its substrate amino acids. Surprisingly, this inhibition persists even after ‘pools’ of amino acids, accumulated initially, have returned to normal sizes. Recovery from this inhibition depends on a supply of energy and involves the synthesis of a membrane protein component of the Gap system.


2006 ◽  
Vol 17 (10) ◽  
pp. 4411-4419 ◽  
Author(s):  
April L. Risinger ◽  
Natalie E. Cain ◽  
Esther J. Chen ◽  
Chris A. Kaiser

The general amino acid permease, Gap1p, of Saccharomyces cerevisiae transports all naturally occurring amino acids into yeast cells for use as a nitrogen source. Previous studies have shown that a nonubiquitinateable form of the permease, Gap1pK9R,K16R, is constitutively localized to the plasma membrane. Here, we report that amino acid transport activity of Gap1pK9R,K16Rcan be rapidly and reversibly inactivated at the plasma membrane by the presence of amino acid mixtures. Surprisingly, we also find that addition of most single amino acids is lethal to Gap1pK9R,K16R-expressing cells, whereas mixtures of amino acids are less toxic. This toxicity appears to be the consequence of uptake of unusually large quantities of a single amino acid. Exploiting this toxicity, we isolated gap1 alleles deficient in transport of a subset of amino acids. Using these mutations, we show that Gap1p inactivation at the plasma membrane does not depend on the presence of either extracellular or intracellular amino acids, but does require active amino acid transport by Gap1p. Together, our findings uncover a new mechanism for inhibition of permease activity in response to elevated amino acid levels and provide a physiological explanation for the stringent regulation of Gap1p activity in response to amino acids.


2001 ◽  
Vol 153 (4) ◽  
pp. 649-662 ◽  
Author(s):  
Stephen B. Helliwell ◽  
Sascha Losko ◽  
Chris A. Kaiser

Gap1p, the general amino acid permease of Saccharomyces cerevisiae, is regulated by intracellular sorting decisions that occur in either Golgi or endosomal compartments. Depending on nitrogen source, Gap1p is transported to the plasma membrane, where it functions for amino acid uptake, or to the vacuole, where it is degraded. We found that overexpression of Bul1p or Bul2p, two nonessential components of the Rsp5p E3–ubiquitin ligase complex, causes Gap1p to be sorted to the vacuole regardless of nitrogen source. The double mutant bul1Δ bul2Δ has the inverse phenotype, causing Gap1p to be delivered to the plasma membrane more efficiently than in wild-type cells. In addition, bul1Δ bul2Δ can reverse the effect of lst4Δ, a mutation that normally prevents Gap1p from reaching the plasma membrane. Evaluation of Gap1p ubiquitination revealed a prominent polyubiquitinated species that was greatly diminished in a bul1Δ bul2Δ mutant. Both a rsp5-1 mutant and a COOH-terminal truncation of Gap1p behave as bul1Δ bul2Δ, causing constitutive delivery of Gap1p to the plasma membrane and decreasing Gap1p polyubiquitination. These results indicate that Bul1p and Bul2p, together with Rsp5p, generate a polyubiquitin signal on Gap1p that specifies its intracellular targeting to the vacuole.


1975 ◽  
Vol 25 (2) ◽  
pp. 119-135 ◽  
Author(s):  
Meryl Polkinghorne ◽  
M. J. Hynes

SUMMARYWild-type strains ofAspergillus nidulansgrow poorly onL-histidine as a sole nitrogen source. The synthesis of the enzyme histidase (EC. 4.3.1.3) appears to be a limiting factor in the growth of the wild type, as strains carrying the mutantareA102 allele have elevated histidase levels and grow strongly on histidine as a sole nitrogen source.L-Histidine is an extremely weak sole carbon source for all strains.Ammonium repression has an important role in the regulation of histidase synthesis and the relief of ammonium repression is dependent on the availability of a good carbon source. The level of histidase synthesis does not respond to the addition of exogenous substrate.Mutants carrying lesions in thesarA orsarB loci (suppressor ofareA102) have been isolated. The growth properties of these mutants on histidine as a sole nitrogen source correlate with the levels of histidase synthesized. Mutation at thesarA andsarB loci also reduces the utilization of a number of other nitrogen sources. The data suggest that these two genes may code for regulatory products involved in nitrogen catabolism. No histidase structural gene mutants were identified and possible explanations of this are discussed.


1983 ◽  
Vol 3 (4) ◽  
pp. 672-683
Author(s):  
W E Courchesne ◽  
B Magasanik

The activities of the proline-specific permease (PUT4) and the general amino acid permease (GAP1) of Saccharomyces cerevisiae vary 70- to 140-fold in response to the nitrogen source of the growth medium. The PUT4 and GAP1 permease activities are regulated by control of synthesis and control of activity. These permeases are irreversibly inactivated by addition of ammonia or glutamine, lowering the activity to that found during steady-state growth on these nitrogen sources. Mutants altered in the regulation of the PUT4 permease (Per-) have been isolated. The mutations in these strains are pleiotropic and affect many other permeases, but have no direct effect on various cytoplasmic enzymes involved in nitrogen assimilation. In strains having one class of mutations (per1), ammonia inactivation of the PUT4 and GAP1 permeases did not occur, whereas glutamate and glutamine inactivation did. Thus, there appear to be two independent inactivation systems, one responding to ammonia and one responding to glutamate (or a metabolite of glutamate). The mutations were found to be nuclear and recessive. The inactivation systems are constitutive and do not require transport of the effector molecules per se, apparently operating on the inside of the cytoplasmic membrane. The ammonia inactivation was found not to require a functional glutamate dehydrogenase (NADP). These mutants were used to show that ammonia exerts control of arginase synthesis largely by inducer exclusion. This may be the primary mode of nitrogen regulation for most nitrogen-regulated enzymes of S. cerevisiae.


2020 ◽  
Author(s):  
Charalampos Rallis ◽  
Michael Mülleder ◽  
Graeme Smith ◽  
Yan Zi Au ◽  
Markus Ralser ◽  
...  

AbstractAmino acid deprivation or supplementation can affect cellular and organismal lifespan, but we know little about the role of concentration changes in free, intracellular amino acids during aging. Here, we determine free amino-acid levels during chronological aging of non-dividing fission yeast cells. We compare wild-type with long-lived mutant cells that lack the Pka1 protein of the protein kinase A signalling pathway. In wild-type cells, total amino-acid levels decrease during aging, but much less so in pka1 mutants. Two amino acids strongly change as a function of age: glutamine decreases, especially in wild-type cells, while aspartate increases, especially in pka1 mutants. Supplementation of glutamine is sufficient to extend the chronological lifespan of wild-type but not of pka1Δ cells. Supplementation of aspartate, on the other hand, shortens the lifespan of pka1Δ but not of wild-type cells. Our results raise the possibility that certain amino acids are biomarkers of aging, and their concentrations during aging can promote or limit cellular lifespan.


2002 ◽  
Vol 184 (15) ◽  
pp. 4071-4080 ◽  
Author(s):  
A. H. F. Hosie ◽  
D. Allaway ◽  
C. S. Galloway ◽  
H. A. Dunsby ◽  
P. S. Poole

ABSTRACT Amino acid uptake by Rhizobium leguminosarum is dominated by two ABC transporters, the general amino acid permease (Aap) and the branched-chain amino acid permease (BraRl). Characterization of the solute specificity of BraRl shows it to be the second general amino acid permease of R. leguminosarum. Although BraRl has high sequence identity to members of the family of hydrophobic amino acid transporters (HAAT), it transports a broad range of solutes, including acidic and basic polar amino acids (l-glutamate, l-arginine, and l-histidine), in addition to neutral amino acids (l-alanine and l-leucine). While amino and carboxyl groups are required for transport, solutes do not have to be α-amino acids. Consistent with this, BraRl is the first ABC transporter to be shown to transport γ-aminobutyric acid (GABA). All previously identified bacterial GABA transporters are secondary carriers of the amino acid-polyamine-organocation (APC) superfamily. Also, transport by BraRl does not appear to be stereospecific as d amino acids cause significant inhibition of uptake of l-glutamate and l-leucine. Unlike all other solutes tested, l-alanine uptake is not dependent on solute binding protein BraCRl. Therefore, a second, unidentified solute binding protein may interact with the BraDEFGRl membrane complex during l-alanine uptake. Overall, the data indicate that BraRl is a general amino acid permease of the HAAT family. Furthermore, BraRl has the broadest solute specificity of any characterized bacterial amino acid transporter.


Sign in / Sign up

Export Citation Format

Share Document