scholarly journals Role of Cytoplasmic Domain Serines in Intracellular Trafficking of Furin

2004 ◽  
Vol 15 (6) ◽  
pp. 2884-2894 ◽  
Author(s):  
Florencia B. Schapiro ◽  
Thwe Thwe Soe ◽  
William G. Mallet ◽  
Frederick R. Maxfield

Furin is a transmembrane protein that cycles between the plasma membrane, endosomes, and the trans-Golgi network, maintaining a predominant distribution in the latter. It has been shown previously that Tac-furin, a chimeric protein expressing the extracellular and transmembrane domains of the interleukin-2 receptor α chain (Tac) and the cytoplasmic domain of furin, is delivered from the plasma membrane to the TGN through late endosomes, bypassing the endocytic recycling compartment. Tac-furin also recycles in a loop between the TGN and late endosomes. Localization of furin to the TGN is modulated by a six-amino acid acidic cluster that contains two phosphorylatable serines (SDSEED). We investigated the role of these serines in the trafficking of Tac-furin by using a mutant chimera in which the SDS sequence was replaced by the nonphosphorylatable sequence ADA (Tac-furin/ADA). Although the mutant construct is internalized and delivered to the TGN, both the postendocytic trafficking and the steady-state distribution were found to differ from the wild-type. In contrast with Tac-furin, Tac-furin/ADA does not enter late endosomes after being internalized. Instead, it traffics with transferrin to the endocytic recycling compartment, and from there it is delivered to the TGN. As with Tac-furin, Tac-furin/ADA is sorted from the TGN into late endosomes at steady state, but its retrieval from the late endosomes to the TGN is inhibited. These results suggest that serine phosphorylation plays an important role in at least two steps of Tac-furin trafficking, acting as an active sorting signal that mediates the selective sorting of Tac-furin into late endosomes after internalization, as well as its retrieval from late endosomes back to the TGN.

1984 ◽  
Vol 99 (6) ◽  
pp. 2333-2335 ◽  
Author(s):  
M Edidin ◽  
M Zuniga

We have compared the lateral diffusion of intact transmembrane proteins, wild-type H-2Ld antigens, with that of mutants truncated in the cytoplasmic domain. Diffusion coefficients and mobile fractions were similar for all molecules examined, from wild-type Ld antigens with 31 residues on the cytoplasmic side of the plasma membrane to mutants with only four residues in the cytoplasmic domain. This result limits ways in which the lateral diffusion of a major histocompatibility antigen, a transmembrane protein, can be constrained by interactions with other molecules.


1985 ◽  
Vol 227 (1) ◽  
pp. 129-136 ◽  
Author(s):  
R G Hansford ◽  
F Castro

The steady-state content of active (dephospho) pyruvate dehydrogenase (PDHA) of suspensions of coupled rat brain mitochondria oxidizing succinate was found to be markedly increased with increasing free Ca2+ ion concentration of the medium, with a half-maximal effect at 10(-6.43) M Ca2+. Other ions were present in these studies at concentrations appropriate for the cytosol. Depolarization of the plasma membrane of synaptosomes caused an increase in the steady-state content of PDHA, with veratridine giving a larger increase than depolarization by 33 mM-KCl. Values were 68 +/- 1% (n = 13) and 81 +/- 1% (n = 19) of maximal activity, for control incubations and incubations in the presence of 30 microM-veratridine, respectively. Measurements of cytosolic free Ca2+ concentrations ([Ca2+]cyt.) in these suspensions of synaptosomes, with the use of the fluorescent Ca2+-indicator Quin-2, indicated an increase on depolarization, with the change due to 30 microM-veratridine being larger in extent than that due to 33 mM-KCl. Values were 217 +/- 21 nM (n = 15), 544 +/- 48 nM (n = 15) and 783 +/- 75 nM (n = 14) for control, KCl-depolarized and veratridine-depolarized synaptosomes respectively. Experiments in which synaptosomes were treated with Ruthenium Red, an inhibitor of mitochondrial Ca2+ uptake, gave much lower resting contents of PDHA (42 +/- 2% of maximal), but failed to prevent totally an increase on depolarization. Addition of an excess of EGTA to the synaptosomal suspension just before the addition of veratridine resulted in a partial diminution in the response of PDHA content. Parallel studies with Quin-2 indicated no increase in [Ca2+]cyt. on addition of veratridine, under these conditions. Thus an increase in [Ca2+]cyt. forms only a part of the mechanism whereby pyruvate dehydrogenase interconversion responds to depolarization. A decrease in the ATP/ADP ratio may also be important, as inferred from the results of experiments with ouabain, which inhibits the Na+ + K+-dependent ATPase.


2020 ◽  
Vol 94 (10) ◽  
Author(s):  
William Bakhache ◽  
Aymeric Neyret ◽  
Eric Bernard ◽  
Andres Merits ◽  
Laurence Briant

ABSTRACT In mammalian cells, alphavirus replication complexes are anchored to the plasma membrane. This interaction with lipid bilayers is mediated through the viral methyl/guanylyltransferase nsP1 and reinforced by palmitoylation of cysteine residue(s) in the C-terminal region of this protein. Lipid content of membranes supporting nsP1 anchoring remains poorly studied. Here, we explore the membrane binding capacity of nsP1 with regard to cholesterol. Using the medically important chikungunya virus (CHIKV) as a model, we report that nsP1 cosegregates with cholesterol-rich detergent-resistant membrane microdomains (DRMs), also called lipid rafts. In search for the critical factor for cholesterol partitioning, we identify nsP1 palmitoylated cysteines as major players in this process. In cells infected with CHIKV or transfected with CHIKV trans-replicase plasmids, nsP1, together with the other nonstructural proteins, are detected in DRMs. While the functional importance of CHIKV nsP1 preference for cholesterol-rich membrane domains remains to be determined, we observed that U18666A- and imipramine-induced sequestration of cholesterol in late endosomes redirected nsP1 to these compartments and simultaneously dramatically decreased CHIKV genome replication. A parallel study of Sindbis virus (SINV) revealed that nsP1 from this divergent alphavirus displays a low affinity for cholesterol and only moderately segregates with DRMs. Behaviors of CHIKV and SINV with regard to cholesterol, therefore, match with the previously reported differences in the requirement for nsP1 palmitoylation, which is dispensable for SINV but strictly required for CHIKV replication. Altogether, this study highlights the functional importance of nsP1 segregation with DRMs and provides new insight into the functional role of nsP1 palmitoylated cysteines during alphavirus replication. IMPORTANCE Functional alphavirus replication complexes are anchored to the host cell membranes through the interaction of nsP1 with the lipid bilayers. In this work, we investigate the importance of cholesterol for such an association. We show that nsP1 has affinity for cholesterol-rich membrane microdomains formed at the plasma membrane and identify conserved palmitoylated cysteine(s) in nsP1 as the key determinant for cholesterol affinity. We demonstrate that drug-induced cholesterol sequestration in late endosomes not only redirects nsP1 to this compartment but also dramatically decreases genome replication, suggesting the functional importance of nsP1 targeting to cholesterol-rich plasma membrane microdomains. Finally, we show evidence that nsP1 from chikungunya and Sindbis viruses displays different sensitivity to cholesterol sequestering agents that parallel with their difference in the requirement for nsP1 palmitoylation for replication. This research, therefore, gives new insight into the functional role of palmitoylated cysteines in nsP1 for the assembly of functional alphavirus replication complexes in their mammalian host.


2002 ◽  
Vol 70 (11) ◽  
pp. 5965-5971 ◽  
Author(s):  
Patricia Ayala ◽  
Brandi Vasquez ◽  
Lee Wetzler ◽  
Magdalene So

ABSTRACT The immunoglobulin A (IgA) protease secreted by pathogenic Neisseria spp. cleaves Lamp1, thereby altering lysosomes in a cell and promoting bacterial intracellular survival. We sought to determine how the IgA protease gains access to cellular Lamp1 in order to better understand the role of this cleavage event in bacterial infection. In a previous report, we demonstrated that the pilus-induced Ca2+ transient triggers lysosome exocytosis in human epithelial cells. This, in turn, increases the level of Lamp1 at the plasma membrane, where it can be cleaved by IgA protease. Here, we show that porin also induces a Ca2+ flux in epithelial cells. This transient is similar in nature to that observed in phagocytes exposed to porin. In contrast to the pilus-induced Ca2+ transient, the porin-induced event does not trigger lysosome exocytosis. Instead, it stimulates exocytosis of early and late endosomes and increases Lamp1 on the cell surface. These results indicate that Neisseria pili and porin perturb Lamp1 trafficking in epithelial cells by triggering separate and distinct Ca2+-dependent exocytic events, bringing Lamp1 to the cell surface, where it can be cleaved by IgA protease.


2008 ◽  
Vol 19 (3) ◽  
pp. 971-983 ◽  
Author(s):  
Rie Yamamura ◽  
Noriyuki Nishimura ◽  
Hiroyoshi Nakatsuji ◽  
Seiji Arase ◽  
Takuya Sasaki

The assembly of tight junctions (TJs) and adherens junctions (AJs) is regulated by the transport of integral TJ and AJ proteins to and/or from the plasma membrane (PM) and it is tightly coordinated in epithelial cells. We previously reported that Rab13 and a junctional Rab13-binding protein (JRAB)/molecule interacting with CasL-like 2 (MICAL-L2) mediated the endocytic recycling of an integral TJ protein occludin and the formation of functional TJs. Here, we investigated the role of Rab13 and JRAB/MICAL-L2 in the transport of other integral TJ and AJ proteins claudin-1 and E-cadherin to the PM by using a Ca2+-switch model. Although knockdown of Rab13 specifically suppressed claudin-1 and occludin but not E-cadherin transport, knockdown of JRAB/MICAL-L2 and expression of its Rab13-binding domain (JRAB/MICAL-L2-C) inhibited claudin-1, occludin, and E-cadherin transport. We then identified Rab8 as another JRAB/MICAL-L2-C-binding protein. Knockdown of Rab8 inhibited the Rab13-independent transport of E-cadherin to the PM. Rab8 and Rab13 competed with each other for the binding to JRAB/MICAL-L2 and functionally associated with JRAB/MICAL-L2 at the perinuclear recycling/storage compartments and PM, respectively. These results suggest that the interaction of JRAB/MICAL-L2 with Rab8 and Rab13 coordinates the assembly of AJs and TJs.


1988 ◽  
Vol 107 (4) ◽  
pp. 1351-1357 ◽  
Author(s):  
J A Chasis ◽  
M E Reid ◽  
R H Jensen ◽  
N Mohandas

Binding of ligands to the extracellular region of the erythrocyte transmembrane protein glycophorin A induces a decrease in membrane deformability. Since the property of membrane deformability is regulated by the skeletal proteins on the cytoplasmic side of the membrane, this suggests that ligand binding may initiate a transmembrane signal. To further study this process, we examined which domains of the extracellular region of glycophorin are involved in signal transduction and whether the cytoplasmic domain of the molecule is necessary for transmitting the signal. Using the ektacytometer, we compared the effect on deformability of four monoclonal antibodies that detect different epitopes on glycophorin A. We found that 9A3 (which recognized the amino terminus of glycophorin) caused a 5.8-fold increase in rigidity, R-10 and 10F7 (which recognized epitopes in the mid-region of the extracellular domain) caused a 10.8-fold increase in rigidity and B14 (which binds to glycophorin close to the membrane) caused a 18-fold increase in rigidity. Further, a direct relationship was observed between the degree of antibody-induced rigidity and the amount of glycophorin A that became associated with the skeletal proteins in a Triton shell assay. In Miltenberger V erythrocytes, which contain a hybrid sialoglycoprotein with no cytoplasmic domain, antibody binding did not induce an increase in rigidity. These results imply that glycophorin A is capable of a modulatable form of transmembrane signaling that is determined by the extracellular domain to which the ligand binds, and the cytoplasmic domain of glycophorin A is crucial for this process.


1986 ◽  
Vol 239 (1) ◽  
pp. 83-87 ◽  
Author(s):  
K P Keinänen ◽  
H J Rajaniemi

Membrane topography of the rat ovarian lutropin receptor was studied by two different approaches. Ovarian membrane preparation, labelled with 125I-labelled human choriogonadotropin in vivo, was subjected to extensive chymotryptic digestion. The soluble and membrane-bound radioactive complexes were cross-linked with glutaraldehyde, and analysed by SDS/polyacrylamide-gel electrophoresis and autoradiography. Chymotrypsin solubilized 70-75% of the radioactivity as Mr-96,000, Mr-74,000 and Mr-61,000 complexes, and decreased the size of the membrane-bound 125I-labelled human choriogonadotropin-receptor complex from Mr 130,000 to Mr 110,000. The Mr-110,000 complex was not observed when 0.1% Triton X-100 was present in the proteolytic digestion. Enrichment of inside-out-oriented plasma-membrane vesicles by concanavalin A affinity chromatography increased by 70% the fraction of radioactivity that remained in the membrane fraction after chymotrypsin treatment. Chymotrypsin also diminished the size of the membrane-bound unoccupied receptor from Mr 90,000 to Mr 70,000, as detected by ligand (125I-labelled human choriogonadotropin) blotting. These results suggest that the lutropin receptor is a transmembrane protein with a cytoplasmic domain of Mr 20,000 that is sensitive to proteolytic digestion in the inside-out-oriented plasma-membrane vesicles.


Author(s):  
Kazuo Kasai ◽  
Kei Suga ◽  
Tetsuro Izumi ◽  
Kimio Akagawa

AbstractSyntaxin 8 has been shown to form the SNARE complex with syntaxin 7, vti1b and endobrevin. These have been shown to function as the machinery for the homotypic fusion of late endosomes. Recently, we showed that syntaxins 7 and 8 cycle through the plasma membrane, and that the di-leucine-based motifs in the cytoplasmic domain of syntaxins 7 and 8 respectively function in their endocytic and exocytic processes. However, we could not elucidate the mechanism by which syntaxin 8 cycles through the plasma membrane. In this study, we constructed several different syntaxin 8 molecules by mutating putative di-leucine-based motifs, and analyzed their intracellular localization and trafficking. We found a di-leucine-based motif in the cytoplasmic domain of syntaxin 8. It is similar to that of syntaxin 7, and functions in its endocytosis. These results suggest that in the cytoplasmic domain, syntaxin 8 has two functionally distinct di-leucine-based motifs that act independently in its endocytic and exocytic processes. This is the first report on two di-leucine-based motifs in the same molecule acting independently in distinct transport pathways.


2011 ◽  
Vol 286 (41) ◽  
pp. 35933-35942 ◽  
Author(s):  
Chang Xie ◽  
Na Li ◽  
Zheng-Jun Chen ◽  
Bo-Liang Li ◽  
Bao-Liang Song

Niemann-Pick C1-like 1 (NPC1L1) is a multi-transmembrane protein that mediates the absorption of dietary and biliary cholesterol through vesicular endocytosis. The subcellular localization of NPC1L1 is regulated by cholesterol. Cholesterol depletion induces the transport of NPC1L1 to plasma membrane (PM) from endocytic recycling compartment that requires MyoVb·Rab11a·Rab11-FIP2 triple complex, and cholesterol-replenishment renders the internalization of NPC1L1 together with cholesterol. Here, we find that GTP-bound Cdc42 interacts with NPC1L1. Cholesterol depletion regulates the activation of Cdc42 and enhances NPC1L1-Cdc42 interaction. Overexpression of constitutive GTP-bound Cdc42 mutant form or knockdown of Cdc42 inhibits the transport of NPC1L1 to the PM and disturbs the cholesterol-regulated binding of NPC1L1 to Rab11a, MyoVb, and actin. Knockdown of Cdc42 downstream effectors N-WASP or Arp3 also leads to the similar results. In liver-specific Cdc42 knock-out (Cdc42 LKO) mice, NPC1L1 fails to localize to bile canaliculi, and the biliary cholesterol cannot be efficiently reabsorbed. These results indicate that Cdc42 controls the cholesterol-regulated transport and localization of NPC1L1, and plays a role in cholesterol absorption.


1998 ◽  
Vol 111 (4) ◽  
pp. 511-519 ◽  
Author(s):  
K. Matter ◽  
M.S. Balda

Tight junctions form a morphological and physical border between the apical and the basolateral cell surface domains of epithelial cells; hence assembly of tight junctions could occur from both of the two plasma membrane domains. We show here that the C-terminal cytoplasmic domain of occludin, the only known transmembrane protein of tight junctions, was sufficient to mediate basolateral expression of a chimeric protein. Since this chimera was transported directly to the basolateral membrane during biosynthesis, the C-terminal domain of occludin contains a basolateral targeting signal. Additionally, the C-terminal domain of occludin was also able to mediate endocytosis. Thus, the C-terminal cytoplasmic domain appears to govern intracellular transport of occludin. To test whether the basolateral membrane is an obligatory intermediate in transport of occludin to tight junctions, we analyzed the expression of occludin molecules rendered unable to efficiently integrate into tight junctions by the introduction of N-linked glycosylation sites into the two extracellular loops. Indeed, glycosylated occludin accumulated in the basolateral membrane, supporting a model in which the biogenesis of tight junctions occurs from this cell-surface domain.


Sign in / Sign up

Export Citation Format

Share Document