scholarly journals Ectopic EphA4 Receptor Induces Posterior Protrusions via FGF Signaling in Xenopus Embryos

2004 ◽  
Vol 15 (4) ◽  
pp. 1647-1655 ◽  
Author(s):  
Eui Kyun Park ◽  
Neil Warner ◽  
Yong-Sik Bong ◽  
David Stapleton ◽  
Ryu Maeda ◽  
...  

The Eph family of receptor tyrosine kinases regulates numerous biological processes. To examine the biochemical and developmental contributions of specific structural motifs within Eph receptors, wild-type or mutant forms of the EphA4 receptor were ectopically expressed in developing Xenopus embryos. Wild-type EphA4 and a mutant lacking both the SAM domain and PDZ binding motif were constitutively tyrosine phosphorylated in vivo and catalytically active in vitro. EphA4 induced loss of cell adhesion, ventro-lateral protrusions, and severely expanded posterior structures in Xenopus embryos. Moreover, mutation of a conserved SAM domain tyrosine to phenylalanine (Y928F) enhanced the ability of EphA4 to induce these phenotypes, suggesting that the SAM domain may negatively regulate some aspects of EphA4 activity in Xenopus. Analysis of double mutants revealed that the Y928F EphA4 phenotypes were dependent on kinase activity; juxtamembrane sites of tyrosine phosphorylation and SH2 domain-binding were required for cell dissociation, but not for posterior protrusions. The induction of protrusions and expansion of posterior structures is similar to phenotypic effects observed in Xenopus embryos expressing activated FGFR1. Furthermore, the budding ectopic protrusions induced by EphA4 express FGF-8, FGFR1, and FGFR4a. In addition, antisense morpholino oligonucleotide-mediated loss of FGF-8 expression in vivo substantially reduced the phenotypic effects in EphA4Y928F expressing embryos, suggesting a connection between Eph and FGF signaling.

Development ◽  
2001 ◽  
Vol 128 (6) ◽  
pp. 895-906
Author(s):  
B. Knoll ◽  
K. Zarbalis ◽  
W. Wurst ◽  
U. Drescher

We have investigated the role of the Eph family of receptor tyrosine kinases and their ligands in the establishment of the vomeronasal projection in the mouse. Our data show intriguing differential expression patterns of ephrin-A5 on vomeronasal axons and of EphA6 in the accessory olfactory bulb (AOB), such that axons with high ligand concentration project onto regions of the AOB with high receptor concentration and vice versa. These data suggest a mechanism for development of this projection that is the opposite of the repellent interaction between Eph receptors and ligands observed in other systems. In support of this idea, when given the choice of whether to grow on lanes containing EphA-F(c)/laminin or F(c)/laminin protein (in the stripe assay), vomeronasal axons prefer to grow on EphA-F(c)/laminin. Analysis of ephrin-A5 mutant mice revealed a disturbance of the topographic targeting of vomeronasal axons to the AOB. In summary, these data, which are derived from in vitro and in vivo experiments, indicate an important role of the EphA family in setting up the vomeronasal projection.


2016 ◽  
Vol 91 (2) ◽  
Author(s):  
Deborah Denis ◽  
Cecile Rouleau ◽  
Brian S. Schaffhausen

ABSTRACT Middle T antigen (MT), the principal oncoprotein of murine polyomavirus, transforms by association with cellular proteins. Protein phosphatase 2A (PP2A), YAP, Src family tyrosine kinases, Shc, phosphatidylinositol 3-kinase (PI3K), and phospholipase C-γ1 (PLCγ1) have all been implicated in MT transformation. Mutant dl1015, with deletion of residues 338 to 347 in the C-terminal region, has been an enigma, because the basis for its transformation defect has not been apparent. This work probes the dl1015 region of MT. Because the region is proline rich, the hypothesis that it targets Src homology domain 3 (SH3) domains was tested, but mutation of the putative SH3 binding motif did not affect transformation. During this work, two point mutants, W348R and E349K, were identified as transformation defective. Extensive analysis of the E349K mutant is described here. Similar to wild-type MT, the E349K mutant associates with PP2A, YAP, tyrosine kinases, Shc, PI3 kinase, and PLCγ1. The E349K mutant was examined to determine the mechanism for its transformation defect. Assays of cell localization and membrane targeting showed no obvious difference in localization. Src association was normal as assayed by in vitro kinase and MT phosphopeptide mapping. Shc activation was confirmed by its tyrosine phosphorylation. Association of type 1 PI3K with MT was demonstrated by coimmunoprecipitation, showing both PI3K subunits and in vitro activity. Nonetheless, expression of the mutants failed to lead to the activation of two known downstream targets of PI3K, Akt and Rac-1. Strikingly, despite normal association of the E349K mutant with PI3K, cells expressing the mutant failed to elevate phosphatidylinositol (3,4,5)-trisphosphate (PIP3) in mutant-expressing cells. These results indicate a novel unsuspected aspect to PI3K control. IMPORTANCE The gene coding for middle T antigen (MT) is the murine polyomavirus oncogene most responsible for tumor formation. Its study has a history of uncovering novel aspects of mammalian cell regulation. The importance of PI3K activity and tyrosine phosphorylation are two examples of insights coming from MT. This study describes new mutants unable to transform like the wild type that point to novel regulation of PI3K signaling. Previous mutants were defective in PI3K because they failed to bind the enzyme and bring the activity to the membrane. These mutants recruit PI3K activity like the wild type, but fail to elevate the cellular level of PIP3, the product used to signal downstream of PI3K. As a result, they fail to activate either Akt or Rac1, explaining the transformation defect.


1994 ◽  
Vol 14 (5) ◽  
pp. 2883-2894 ◽  
Author(s):  
B J Mayer ◽  
D Baltimore

We have used in vitro mutagenesis to examine in detail the roles of two modular protein domains, SH2 and SH3, in the regulation of the Abl tyrosine kinase. As previously shown, the SH3 domain suppresses an intrinsic transforming activity of the normally nontransforming c-Abl product in vivo. We show here that this inhibitory activity is extremely position sensitive, because mutants in which the position of the SH3 domain within the protein is subtly altered are fully transforming. In contrast to the case in vivo, the SH3 domain has no effect on the in vitro kinase activity of the purified protein. These results are consistent with a model in which the SH3 domain binds a cellular inhibitory factor, which in turn must physically interact with other parts of the kinase. Unlike the SH3 domain, the SH2 domain is required for transforming activity of activated Abl alleles. We demonstrate that SH2 domains from other proteins (Ras-GTPase-activating protein, Src, p85 phosphatidylinositol 3-kinase subunit, and Crk) can complement the absence of the Abl SH2 domain and that mutants with heterologous SH2 domains induce altered patterns of tyrosine-phosphorylated proteins in vivo. The positive function of the SH2 domain is relatively position independent, and the effect of multiple SH2 domains appears to be additive. These results suggest a novel mechanism for regulation of tyrosine kinases in which the SH2 domain binds to, and thereby enhances the phosphorylation of, a subset of proteins phosphorylated by the catalytic domain. Our data also suggest that the roles of the SH2 and SH3 domains in the regulation of Abl are different in several respects from the roles proposed for these domains in the closely related Src family of tyrosine kinases.


2013 ◽  
Vol 31 (15_suppl) ◽  
pp. e18532-e18532
Author(s):  
Mathilde Cabart ◽  
Judith Raimbourg ◽  
Lisenn Lalier ◽  
Jaafar Bennouna ◽  
Francois Vallette

e18532 Background: EGFR tyrosine kinase inhibitors (EGFR TKI) have improved the therapeutic care of lung cancer patients but only a small sub-population of patients, namely those harboring EGFR-mutated tumors, benefit from this therapy. The observation that EGFR TKI enhance prognosis and quality of life in all patients when used as second line or maintenance treatment impelled us into the search of potential markers of the optimal introduction kinetics of EGFR TKI in the therapeutic scheme. Methods: We used lung cancer cell lines harboring either wild-type or mutated EGFR (NCI-H1650, NCI-H1975) to study the consequences of cisplatin treatment in vitro on the consecutive sensitivity to erlotinib. Results: Sub-lethal cisplatin pretreatment (3µM) enhances erlotinib toxicity in EGFR wild-type, but not EGFR mutated cells (A549 IC50 drops from 28 to 15µM for short-term or 12µM for long-term exposure). This correlates with EGFR activation following short-term or prolonged cisplatin treatment through the secretion of EGFR ligands. This activation of EGFR is concomitant to the decrease in other receptor tyrosine kinases phosphorylation including Met. Conclusions: The sensitivity of EGFR wild-type lung cancer cells to erlotinib in vitro is enhanced by cisplatin pretreatment. We identified potential markers of this sensitization, namely EGFR ligands, which serum level might be predicitive of the optimal efficiency of EGFR TKI. In vivo validation of these markers is under investigation. The concomitant decrease in other receptor tyrosine kinases phosphorylation suggests that the targeting of other receptor tyrosine kinases might potentiate EGFR TKI efficiency.


2012 ◽  
Vol 24 (6) ◽  
pp. 769
Author(s):  
Yong Hwan Kim ◽  
Jee Yoon Shin ◽  
Wonho Na ◽  
Jungho Kim ◽  
Bong-Gun Ju ◽  
...  

Fibroblast growth factors (FGFs) function as mitogens and morphogens during vertebrate development. In the present study, to characterise the regulatory mechanism of FGF8 gene expression in developing Xenopus embryos the upstream region of the Xenopus FGF8 (XFGF8) gene was isolated. The upstream region of the XFGF8 gene contains two putative binding sites for the SRY (sex-determining region Y)-box 2 (SOX2) transcription factor. A reporter assay with serially deleted constructs revealed that the putative SOX2-binding motif may be a critical cis-element for XFGF8 gene activation in developing Xenopus embryos. Furthermore, Xenopus SOX2 (XSOX2) physically interacted with the SOX2-binding motif within the upstream region of the XFGF8 gene in vitro and in vivo. Depletion of endogenous XSOX2 resulted in loss of XFGF8 gene expression in midbrain–hindbrain junction, auditory placode, lens placode and forebrain in developing Xenopus embryos. Collectively, our results suggest that XSOX2 directly upregulates XFGF8 gene expression in the early embryonic development of Xenopus.


Development ◽  
1996 ◽  
Vol 122 (10) ◽  
pp. 3255-3261 ◽  
Author(s):  
L.G. Pinon ◽  
L. Minichiello ◽  
R. Klein ◽  
A.M. Davies

The sensory neurons of the embryonic mouse trigeminal ganglion are supported in culture by different neurotrophins at successive stages of development. Initially the neurons survive in response to BDNF and NT3 and later switch to becoming NGF-dependent (Buchman, V. I. and Davies, A. M. (1993), Development 118, 989–1001). To determine if this in vitro switch in neurotrophin responsiveness is physiologically relevant, we studied the timing of neuronal death in the trigeminal ganglia of embryos that are homozygous for null mutations in the trkA, trkB and trkC genes, which encode receptor tyrosine kinases for NGF, BDNF and NT3, respectively. In wild-type embryos, the number of pyknotic nuclei increased from E11 to peak between E13 and E14, and decreased gradually at later ages, becoming negligible by birth. Neuronal death in the trigeminal ganglia of trkA−/− embryos also peaked between E13 and E14, but was almost threefold greater than in wild-type embryos at this stage. Whereas there was no significant difference between the number of pyknotic nuclei in trkA−/− and wild-type embryos at E11 and E12, there was a substantial increase in the number of pyknotic nuclei in the trigeminal ganglia of trkB−/− at these earlier stages. Counts of the total number of neurons in E13 trigeminal ganglia revealed a marked decrease in trkB−/− but not trkA−/− or trkC−/− embryos. Consistent with the later onset of excessive neuronal death in trkA−/− embryos, there was a marked decrease in the neuronal complement of the trigeminal ganglia of trkA−/− embryos at E15. These results demonstrate that TrkB signalling is required for the in vivo survival of many trigeminal neurons during the early stages of target field innervation before they become NGF-dependent.


1997 ◽  
Vol 17 (11) ◽  
pp. 6633-6644 ◽  
Author(s):  
L Rui ◽  
L S Mathews ◽  
K Hotta ◽  
T A Gustafson ◽  
C Carter-Su

Activation of the tyrosine kinase JAK2 is an essential step in cellular signaling by growth hormone (GH) and multiple other hormones and cytokines. Murine JAK2 has a total of 49 tyrosines which, if phosphorylated, could serve as docking sites for Src homology 2 (SH2) or phosphotyrosine binding domain-containing signaling molecules. Using a yeast two-hybrid screen of a rat adipocyte cDNA library, we identified a splicing variant of the SH2 domain-containing protein SH2-B, designated SH2-Bbeta, as a JAK2-interacting protein. The carboxyl terminus of SH2-Bbeta (SH2-Bbetac), which contains the SH2 domain, specifically interacts with kinase-active, tyrosyl-phosphorylated JAK2 but not kinase-inactive, unphosphorylated JAK2 in the yeast two-hybrid system. In COS cells coexpressing SH2-Bbeta or SH2-Bbetac and murine JAK2, both SH2-Bbetac and SH2-Bbeta coimmunoprecipitate to a significantly greater extent with wild-type, tyrosyl-phosphorylated JAK2 than with kinase-inactive, unphosphorylated JAK2. SH2-Bbetac also binds to immunoprecipitated wild-type but not kinase-inactive JAK2 in a far Western blot. In 3T3-F442A cells, GH stimulates the interaction of SH2-Bbeta with tyrosyl-phosphorylated JAK2 both in vitro, as assessed by binding of JAK2 in cell lysates to glutathione S-transferase (GST)-SH2-Bbetac or GST-SH2-Bbeta fusion proteins, and in vivo, as assessed by coimmunoprecipitation of JAK2 with SH2-Bbeta. GH promoted a transient and dose-dependent tyrosyl phosphorylation of SH2-Bbeta in 3T3-F442A cells, further suggesting the involvement of SH2-Bbeta in GH signaling. Consistent with SH2-Bbeta being a substrate of JAK2, SH2-Bbetac is tyrosyl phosphorylated when coexpressed with wild-type but not kinase-inactive JAK2 in both yeast and COS cells. SH2-Bbeta was also tyrosyl phosphorylated in response to gamma interferon, a cytokine that activates JAK2 and JAK1. These data suggest that GH-induced activation and phosphorylation of JAK2 recruits SH2-Bbeta and its associated signaling molecules into a GHR-JAK2 complex, thereby initiating some as yet unidentified signal transduction pathways. These pathways are likely to be shared by other cytokines that activate JAK2.


1994 ◽  
Vol 14 (5) ◽  
pp. 2883-2894
Author(s):  
B J Mayer ◽  
D Baltimore

We have used in vitro mutagenesis to examine in detail the roles of two modular protein domains, SH2 and SH3, in the regulation of the Abl tyrosine kinase. As previously shown, the SH3 domain suppresses an intrinsic transforming activity of the normally nontransforming c-Abl product in vivo. We show here that this inhibitory activity is extremely position sensitive, because mutants in which the position of the SH3 domain within the protein is subtly altered are fully transforming. In contrast to the case in vivo, the SH3 domain has no effect on the in vitro kinase activity of the purified protein. These results are consistent with a model in which the SH3 domain binds a cellular inhibitory factor, which in turn must physically interact with other parts of the kinase. Unlike the SH3 domain, the SH2 domain is required for transforming activity of activated Abl alleles. We demonstrate that SH2 domains from other proteins (Ras-GTPase-activating protein, Src, p85 phosphatidylinositol 3-kinase subunit, and Crk) can complement the absence of the Abl SH2 domain and that mutants with heterologous SH2 domains induce altered patterns of tyrosine-phosphorylated proteins in vivo. The positive function of the SH2 domain is relatively position independent, and the effect of multiple SH2 domains appears to be additive. These results suggest a novel mechanism for regulation of tyrosine kinases in which the SH2 domain binds to, and thereby enhances the phosphorylation of, a subset of proteins phosphorylated by the catalytic domain. Our data also suggest that the roles of the SH2 and SH3 domains in the regulation of Abl are different in several respects from the roles proposed for these domains in the closely related Src family of tyrosine kinases.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 4172-4172
Author(s):  
Clemens Pausz ◽  
Rula Mawas ◽  
Matthias Unseld ◽  
Anastasia Chilla ◽  
René Novotny ◽  
...  

Abstract In this study we characterized a conserved motif of domain 3 of the urokinase-type plasminogen activator receptor (uPAR) to directly interact with low-density lipoprotein receptor (LDLR)-related protein (LRP) family proteins, thereby affecting endothelial cell motility and angiogenesis in vitro and in vivo. There is increasing evidence that uPAR plays a central role in growth factor induced endothelial cell activation. Beside its proteolytic role, urokinase-type plasminogen activator (uPA) / uPAR-complex formation induces intracellular signal transduction, which leads to endothelial cell migration and invasion. Since uPAR is a GPI-anchored protein, an interaction with transmembrane proteins - such as members of the LDL-receptor family - is required, inducing signal transduction but also regulating distribution of uPAR via its internalization and recycling to the leading edge. Recently, a direct interaction between uPAR and LRP-family members has been suggested to be sufficient to mediate internalization of uPAR-complex. A crystal structure analysis revealed a small sequence of domain 3 (D3) of uPAR, to be highly exposed upon uPA binding to its receptor. Applying affinity chromatography analysis as well as mutation expression studies, we identified the sequence as an LRP-binding motif, which affects endothelial cell spreading, migration and invasion upon VEGF in vivo as well as in vitro. In detail, matrigel-filled angioreactors with embedded retroviral constructs, carrying wild-type or modified uPAR genes, were implanted subcutaneously into uPAR deficient C57BL/6 mice. After explantation, blood vessel in-growth analysis revealed that only angioreactors with reconstituted wild-type uPAR but not reactors with modified uPAR, being deficient in LDLR interaction, showed angiogenesis. To test a therapeutic impact, peptides mimicking the binding motif and competitive for LDLR binding were used. We found that in a dose dependent manner the peptides did not only block uPAR/LDLR-like protein interaction, but were also capable of blocking VEGF-induced endothelial cell migration in vitro. In summary, our data show that a conserved motif of uPAR domain 3 is capable to interact with LDLR-like proteins, which is required for efficient growth-factor induced endothelial cell behavior. Preliminary functional data suggest that this extracellular motif might be a potential therapeutic target in angiogenesis dependent diseases such as cancer. Disclosures No relevant conflicts of interest to declare.


1994 ◽  
Vol 14 (3) ◽  
pp. 1680-1688
Author(s):  
M D Schaller ◽  
J D Hildebrand ◽  
J D Shannon ◽  
J W Fox ◽  
R R Vines ◽  
...  

The phosphorylation of protein tyrosine kinases (PTKs) on tyrosine residues is a critical regulatory event that modulates catalytic activity and triggers the physical association of PTKs with Src homology 2 (SH2)-containing proteins. The integrin-linked focal adhesion kinase, pp125FAK, exhibits extracellular matrix-dependent phosphorylation on tyrosine and physically associates with two nonreceptor PTKs, pp60src and pp59fyn, via their SH2 domains. Herein, we identify Tyr-397 as the major site of tyrosine phosphorylation on pp125FAK both in vivo and in vitro. Tyrosine 397 is located at the juncture of the N-terminal and catalytic domains, a novel site for PTK autophosphorylation. Mutation of Tyr-397 to a nonphosphorylatable residue dramatically impairs the phosphorylation of pp125FAK on tyrosine in vivo and in vitro. The mutation of Tyr-397 to Phe also inhibits the formation of stable complexes with pp60src in cells expressing Src and FAK397F, suggesting that autophosphorylation of pp125FAK may regulate the association of pp125FAK with Src family kinases in vivo. The identification of Tyr-397 as a major site for FAK autophosphorylation provides one of the first examples of a cellular protein containing a high-affinity binding site for a Src family kinase SH2 domain. This finding has implications for models describing the mechanisms of action of pp125FAK, the regulation of the Src family of PTKs, and signal transduction through the integrins.


Sign in / Sign up

Export Citation Format

Share Document