scholarly journals Differential Trafficking of Transforming Growth Factor-β Receptors and Ligand in Polarized Epithelial Cells

2004 ◽  
Vol 15 (6) ◽  
pp. 2853-2862 ◽  
Author(s):  
S. J. Murphy ◽  
J. J. E. Doré ◽  
M. Edens ◽  
R. J. Coffey ◽  
J. A. Barnard ◽  
...  

Epithelial cells in vivo form tight cell-cell associations that spatially separate distinct apical and basolateral domains. These domains provide discrete cellular processes essential for proper tissue and organ development. Using confocal imaging and selective plasma membrane domain activation, the type I and type II transforming growth factor-β (TGFβ) receptors were found to be localized specifically at the basolateral surfaces of polarized Madin-Darby canine kidney (MDCK) cells. Receptors concentrated predominantly at the lateral sites of cell-cell contact, adjacent to the gap junctional complex. Cytoplasmic domain truncations for each receptor resulted in the loss of specific lateral domain targeting and dispersion to both the apical and basal domains. Whereas receptors concentrate basolaterally in regions of direct cell-cell contact in nonpolarized MDCK cell monolayers, receptor staining was absent from areas of noncell contact. In contrast to the defined basolateral polarity observed for the TGFβ receptor complex, TGFβ ligand secretion was found to be from the apical surfaces. Confocal imaging of MDCK cells with an antibody to TGFβ1 confirmed a predominant apical localization, with a stark absence at the basal membrane. These findings indicate that cell adhesion regulates the localization of TGFβ receptors in polarized epithelial cultures and that the response to TGFβ is dependent upon the spatial distribution and secretion of TGFβ receptors and ligand, respectively.

1997 ◽  
Vol 8 (11) ◽  
pp. 2133-2143 ◽  
Author(s):  
Robert A. Anders ◽  
Sandra L. Arline ◽  
Jules J.E. Doré ◽  
Edward B. Leof

Transforming growth factor β (TGFβ) family ligands initiate a cascade of events capable of modulating cellular growth and differentiation. The receptors responsible for transducing these cellular signals are referred to as the type I and type II TGFβ receptors. Ligand binding to the type II receptor results in the transphosphorylation and activation of the type I receptor. This heteromeric complex then propagates the signal(s) to downstream effectors. There is presently little data concerning the fate of TGFβ receptors after ligand binding, with conflicting reports indicating no change or decreasing cell surface receptor numbers. To address the fate of ligand-activated receptors, we have used our previously characterized chimeric receptors consisting of the ligand binding domain from the granulocyte/macrophage colony-stimulating factor α or β receptor fused to the transmembrane and cytoplasmic domain of the type I or type II TGFβ receptor. This system not only provides the necessary sensitivity and specificity to address these types of questions but also permits the differentiation of endocytic responses to either homomeric or heteromeric intracellular TGFβ receptor oligomerization. Data are presented that show, within minutes of ligand binding, chimeric TGFβ receptors are internalized. However, although all the chimeric receptor combinations show similar internalization rates, receptor down-regulation occurs only after activation of heteromeric TGFβ receptors. These results indicate that effective receptor down-regulation requires cross-talk between the type I and type II TGFβ receptors and that TGFβ receptor heteromers and homomers show distinct trafficking behavior.


2001 ◽  
Vol 194 (5) ◽  
pp. 629-644 ◽  
Author(s):  
Kazuhiko Nakamura ◽  
Atsushi Kitani ◽  
Warren Strober

CD4+CD25+ T cells have been identified as a population of immunoregulatory T cells, which mediate suppression of CD4+CD25− T cells by cell–cell contact and not secretion of suppressor cytokines. In this study, we demonstrated that CD4+CD25+ T cells do produce high levels of transforming growth factor (TGF)-β1 and interleukin (IL)-10 compared with CD4+CD25− T cells when stimulated by plate-bound anti-CD3 and soluble anti-CD28 and/or IL-2, and secretion of TGF-β1 (but not other cytokines), is further enhanced by costimulation via cytotoxic T lymphocyte–associated antigen (CTLA)-4. As in prior studies, we found that CD4+CD25+ T cells suppress proliferation of CD4+CD25− T cells; however, we observed here that such suppression is abolished by the presence of anti–TGF-β. In addition, we found that CD4+CD25+ T cells suppress B cell immunoglobulin production and that anti–TGF-β again abolishes such suppression. Finally, we found that stimulated CD4+CD25+ T cells but not CD4+CD25− T cells express high and persistent levels of TGF-β1 on the cell surface. This, plus the fact that we could find no evidence that a soluble factor mediates suppression, strongly suggests that CD4+CD25+ T cells exert immunosuppression by a cell–cell interaction involving cell surface TGF-β1.


2016 ◽  
Vol 44 (4) ◽  
pp. 276-285 ◽  
Author(s):  
Natsuki Kushida ◽  
Seitaro Nomura ◽  
Imari Mimura ◽  
Takanori Fujita ◽  
Shogo Yamamoto ◽  
...  

Background: Kidney injury, including chronic kidney disease and acute kidney injury, is a worldwide health problem. Hypoxia and transforming growth factor-β (TGF-β) are well-known factors that promote kidney injury. Hypoxia-inducible factor (HIF) and SMAD3 are their main downstream transcriptional factors. Hypoxia-HIF pathway and TGF-β/SMAD3 pathway play a crucial role in the progression of kidney injury. However, reports on their interactions are limited, and the global transcriptional regulation under their control is almost unknown. Methods: Kidney tubular epithelial cells were cultured and stimulated by hypoxia and TGF-β. We detected global binding sites of HIF-1α and SMAD3 in cells using chromatin immunoprecipitation-sequencing (ChIP-Seq), and measured the gene expression using RNA-sequencing (RNA-Seq). ChIP-quantitative PCR (qPCR) was used to quantitatively evaluate bindings of SMAD3. Results: ChIP-Seq revealed that 2,065 and 5,003 sites were bound by HIF-1α and SMAD3, respectively, with 614 sites co-occupied by both factors. RNA-Seq showed that hypoxia and TGF-β stimulation causes synergistic upregulation of 249 genes, including collagen type I alpha 1 (COL1A1) and serpin peptidase inhibitor, clade E, member 1, which are well-known to be involved in fibrosis. Ontology of the 249 genes implied that the interaction of HIF-1α and SMAD3 is related to biological processes such as fibrosis. ChIP-qPCR of SMAD3 at HIF-1α binding sites near COL1A1 and SERPINE1 indicated that HIF-1α promotes the bindings of SMAD3, which is induced by TGF-β. Conclusions: These findings suggest that HIF-1α induced by hypoxia activates the TGF-β/SMAD3 pathway. This mechanism may promote kidney injury, especially by upregulating genes related to fibrosis.


2001 ◽  
Vol 12 (3) ◽  
pp. 675-684 ◽  
Author(s):  
Jules J.E. Doré ◽  
Diying Yao ◽  
Maryanne Edens ◽  
Nandor Garamszegi ◽  
Elizabeth L. Sholl ◽  
...  

Transforming growth factor-βs (TGF-β) are multifunctional proteins capable of either stimulating or inhibiting mitosis, depending on the cell type. These diverse cellular responses are caused by stimulating a single receptor complex composed of type I and type II receptors. Using a chimeric receptor model where the granulocyte/monocyte colony-stimulating factor receptor ligand binding domains are fused to the transmembrane and cytoplasmic signaling domains of the TGF-β type I and II receptors, we wished to describe the role(s) of specific amino acid residues in regulating ligand-mediated endocytosis and signaling in fibroblasts and epithelial cells. Specific point mutations were introduced at Y182, T200, and Y249 of the type I receptor and K277 and P525 of the type II receptor. Mutation of either Y182 or Y249, residues within two putative consensus tyrosine-based internalization motifs, had no effect on endocytosis or signaling. This is in contrast to mutation of T200 to valine, which resulted in ablation of signaling in both cell types, while only abolishing receptor down-regulation in fibroblasts. Moreover, in the absence of ligand, both fibroblasts and epithelial cells constitutively internalize and recycle the TGF-β receptor complex back to the plasma membrane. The data indicate fundamental differences between mesenchymal and epithelial cells in endocytic sorting and suggest that ligand binding diverts heteromeric receptors from the default recycling pool to a pathway mediating receptor down-regulation and signaling.


2010 ◽  
Vol 21 (21) ◽  
pp. 3654-3668 ◽  
Author(s):  
Jose V. Moyano ◽  
Patricia G. Greciano ◽  
Mary M. Buschmann ◽  
Manuel Koch ◽  
Karl S. Matlin

Laminin (LM)-332 is an extracellular matrix protein that plays a structural role in normal tissues and is also important in facilitating recovery of epithelia from injury. We have shown that expression of LM-332 is up-regulated during renal epithelial regeneration after ischemic injury, but the molecular signals that control expression are unknown. Here, we demonstrate that in Madin-Darby canine kidney (MDCK) epithelial cells LM-332 expression occurs only in subconfluent cultures and is turned-off after a polarized epithelium has formed. Addition of active transforming growth factor (TGF)-β1 to confluent MDCK monolayers is sufficient to induce transcription of the LM α3 gene and LM-332 protein expression via the TGF-β type I receptor (TβR-I) and the Smad2–Smad4 complex. Significantly, we show that expression of LM-332 in MDCK cells is an autocrine response to endogenous TGF-β1 secretion and activation mediated by integrin αVβ3 because neutralizing antibodies block LM-332 production in subconfluent cells. In confluent cells, latent TGF-β1 is secreted apically, whereas TβR-I and integrin αVβ3 are localized basolaterally. Disruption of the epithelial barrier by mechanical injury activates TGF-β1, leading to LM-332 expression. Together, our data suggest a novel mechanism for triggering the production of LM-332 after epithelial injury.


1998 ◽  
Vol 273 (16) ◽  
pp. 9365-9368 ◽  
Author(s):  
Min-Ji Charng ◽  
Dou Zhang ◽  
Paı̈vi Kinnunen ◽  
Michael D. Schneider

Sign in / Sign up

Export Citation Format

Share Document