scholarly journals A Minus-End–directed Kinesin with Plus-End Tracking Protein Activity Is Involved in Spindle Morphogenesis

2005 ◽  
Vol 16 (4) ◽  
pp. 1584-1592 ◽  
Author(s):  
J. Christian Ambrose ◽  
Wuxing Li ◽  
Adam Marcus ◽  
Hong Ma ◽  
Richard Cyr

Diverse kinesin motor proteins are involved in spindle function; however, the mechanisms by which they are targeted to specific sites within spindles are not well understood. Here, we show that a fusion between yellow fluorescent protein (YFP) and a minus-end–directed Kinesin-14 (C-terminal family) from Arabidopsis, ATK5, localizes to mitotic spindle midzones and regions rich in growing plus-ends within phragmoplasts. Notably, in Arabidopsis interphase cells, YFP::ATK5 localizes to microtubules with a preferential enrichment at growing plus-ends; indicating ATK5 is a plus-end tracking protein (+TIP). This +TIP activity is conferred by regions outside of the C-terminal motor domain, which reveals the presence of independent plus-end tracking and minus-end motor activities within ATK5. Furthermore, mitotic spindles of atk5 null mutant plants are abnormally broadened. Based on these data, we propose a model in which ATK5 uses plus-end tracking to reach spindle midzones, where it then organizes microtubules via minus-end–directed motor activity.

2016 ◽  
Vol 27 (8) ◽  
pp. 1300-1309 ◽  
Author(s):  
Linda Wordeman ◽  
Justin Decarreau ◽  
Juan Jesus Vicente ◽  
Michael Wagenbach

Depletion of microtubule (MT) regulators can initiate stable alterations in MT assembly rates that affect chromosome instability and mitotic spindle function, but the manner by which cellular MT assembly rates can stably increase or decrease is not understood. To investigate this phenomenon, we measured the response of microtubule assembly to both rapid and long-term loss of MT regulators MCAK/Kif2C and Kif18A. Depletion of MCAK/Kif2C by siRNA stably decreases MT assembly rates in mitotic spindles, whereas depletion of Kif18A stably increases rates of assembly. Surprisingly, this is not phenocopied by rapid rapamycin-dependent relocalization of MCAK/Kif2C and Kif18A to the plasma membrane. Instead, this treatment yields opposite affects on MT assembly. Rapidly increased MT assembly rates are balanced by a decrease in nucleated microtubules, whereas nucleation appears to be maximal and limiting for decreased MT assembly rates and also for long-term treatments. We measured amplified tubulin synthesis during long-term depletion of MT regulators and hypothesize that this is the basis for different phenotypes arising from long-term versus rapid depletion of MT regulators.


2005 ◽  
Vol 16 (10) ◽  
pp. 4609-4622 ◽  
Author(s):  
Rebecca A. Green ◽  
Roy Wollman ◽  
Kenneth B. Kaplan

Recently, we have shown that a cancer causing truncation in adenomatous polyposis coli (APC) (APC1–1450) dominantly interferes with mitotic spindle function, suggesting APC regulates microtubule dynamics during mitosis. Here, we examine the possibility that APC mutants interfere with the function of EB1, a plus-end microtubule-binding protein that interacts with APC and is required for normal microtubule dynamics. We show that siRNA-mediated inhibition of APC, EB1, or APC and EB1 together give rise to similar defects in mitotic spindles and chromosome alignment without arresting cells in mitosis; in contrast inhibition of CLIP170 or LIS1 cause distinct spindle defects and mitotic arrest. We show that APC1–1450 acts as a dominant negative by forming a hetero-oligomer with the full-length APC and preventing it from interacting with EB1, which is consistent with a functional relationship between APC and EB1. Live-imaging of mitotic cells expressing EB1-GFP demonstrates that APC1–1450 compromises the dynamics of EB1-comets, increasing the frequency of EB1-GFP pausing. Together these data provide novel insight into how APC may regulate mitotic spindle function and how errors in chromosome segregation are tolerated in tumor cells.


2008 ◽  
Vol 182 (1) ◽  
pp. 77-88 ◽  
Author(s):  
Sarah Woolner ◽  
Lori L. O'Brien ◽  
Christiane Wiese ◽  
William M. Bement

Mitotic spindles are microtubule-based structures responsible for chromosome partitioning during cell division. Although the roles of microtubules and microtubule-based motors in mitotic spindles are well established, whether or not actin filaments (F-actin) and F-actin–based motors (myosins) are required components of mitotic spindles has long been controversial. Based on the demonstration that myosin-10 (Myo10) is important for assembly of meiotic spindles, we assessed the role of this unconventional myosin, as well as F-actin, in mitotic spindles. We find that Myo10 localizes to mitotic spindle poles and is essential for proper spindle anchoring, normal spindle length, spindle pole integrity, and progression through metaphase. Furthermore, we show that F-actin localizes to mitotic spindles in dynamic cables that surround the spindle and extend between the spindle and the cortex. Remarkably, although proper anchoring depends on both F-actin and Myo10, the requirement for Myo10 in spindle pole integrity is F-actin independent, whereas F-actin and Myo10 actually play antagonistic roles in maintenance of spindle length.


Author(s):  
Kent McDonald

At the light microscope level the recent developments and interest in antibody technology have permitted the localization of certain non-microtubule proteins within the mitotic spindle, e.g., calmodulin, actin, intermediate filaments, protein kinases and various microtubule associated proteins. Also, the use of fluorescent probes like chlorotetracycline suggest the presence of membranes in the spindle. Localization of non-microtubule structures in the spindle at the EM level has been less rewarding. Some mitosis researchers, e.g., Rarer, have maintained that actin is involved in mitosis movements though the bulk of evidence argues against this interpretation. Others suggest that a microtrabecular network such as found in chromatophore granule movement might be a possible force generator but there is little evidence for or against this view. At the level of regulation of spindle function, Harris and more recently Hepler have argued for the importance of studying spindle membranes. Hepler also believes that membranes might play a structural or mechanical role in moving chromosomes.


Author(s):  
Kent McDonald ◽  
David Mastronarde ◽  
Rubai Ding ◽  
Eileen O'Toole ◽  
J. Richard McIntosh

Mammalian spindles are generally large and may contain over a thousand microtubules (MTs). For this reason they are difficult to reconstruct in three dimensions and many researchers have chosen to study the smaller and simpler spindles of lower eukaryotes. Nevertheless, the mammalian spindle is used for many experimental studies and it would be useful to know its detailed structure.We have been using serial cross sections and computer reconstruction methods to analyze MT distributions in mitotic spindles of PtK cells, a mammalian tissue culture line. Images from EM negatives are digtized on a light box by a Dage MTI video camera containing a black and white Saticon tube. The signal is digitized by a Parallax 1280 graphics device in a MicroVax III computer. Microtubules are digitized at a magnification such that each is 10-12 pixels in diameter.


Author(s):  
J. Holy ◽  
G. Schatten

One of the classic limitations of light microscopy has been the fact that three dimensional biological events could only be visualized in two dimensions. Recently, this shortcoming has been overcome by combining the technologies of laser scanning confocal microscopy (LSCM) and computer processing of microscopical data by volume rendering methods. We have employed these techniques to examine morphogenetic events characterizing early development of sea urchin embryos. Specifically, the fourth cleavage division was examined because it is at this point that the first morphological signs of cell differentiation appear, manifested in the production of macromeres and micromeres by unequally dividing vegetal blastomeres.The mitotic spindle within vegetal blastomeres undergoing unequal cleavage are highly polarized and develop specialized, flattened asters toward the micromere pole. In order to reconstruct the three-dimensional features of these spindles, both isolated spindles and intact, extracted embryos were fluorescently labeled with antibodies directed against either centrosomes or tubulin.


Sign in / Sign up

Export Citation Format

Share Document