scholarly journals Induction of theCandida albicansFilamentous Growth Program by Relief of Transcriptional Repression: A Genome-wide Analysis

2005 ◽  
Vol 16 (6) ◽  
pp. 2903-2912 ◽  
Author(s):  
David Kadosh ◽  
Alexander D. Johnson

Candida albicans, the major human fungal pathogen, undergoes a reversible morphological transition from blastospores (round budding cells) to filaments (elongated cells attached end-to-end). This transition, which is induced upon exposure of C. albicans cells to a number of host conditions, including serum and body temperature (37°C), is required for virulence. Using whole-genome DNA microarray analysis, we describe 61 genes that are significantly induced (≥2-fold) during the blastospore to filament transition that takes place in response to exposure to serum and 37°C. We next show that approximately half of these genes are transcriptionally repressed in the blastospore state by three transcriptional repressors, Rfg1, Nrg1, and Tup1. We conclude that the relief of this transcriptional repression plays a key role in bringing the C. albicans filamentous growth program into play, and we describe the framework of this transcriptional circuit.

2007 ◽  
Vol 164 (1) ◽  
pp. 1-17 ◽  
Author(s):  
Dibyendu Banerjee ◽  
Nuria Martin ◽  
Soumyadeep Nandi ◽  
Sudhanshu Shukla ◽  
Angel Dominguez ◽  
...  

Antibiotics ◽  
2019 ◽  
Vol 9 (1) ◽  
pp. 10 ◽  
Author(s):  
Olena P. Ishchuk ◽  
Olov Sterner ◽  
Ulf Ellervik ◽  
Sophie Manner

The opportunistic human fungal pathogen Candida albicans relies on cell morphological transitions to develop biofilm and invade the host. In the current study, we developed new regulatory molecules, which inhibit the morphological transition of C. albicans from yeast-form cells to cells forming hyphae. These compounds, benzyl α-l-fucopyranoside and benzyl β-d-xylopyranoside, inhibit the hyphae formation and adhesion of C. albicans to a polystyrene surface, resulting in a reduced biofilm formation. The addition of cAMP to cells treated with α-l-fucopyranoside restored the yeast-hyphae switch and the biofilm level to that of the untreated control. In the β-d-xylopyranoside treated cells, the biofilm level was only partially restored by the addition of cAMP, and these cells remained mainly as yeast-form cells.


2019 ◽  
Author(s):  
Olena P. Ishchuk ◽  
Olov Sterner ◽  
Ulf Ellervik ◽  
Sophie Manner

Abstract The opportunistic human fungal pathogen Candida albicans rely on cell morphological transitions to develop biofilm and invade the host. In the current study, we developed new regulatory molecules, which inhibit the morphological transition of C. albicans from yeast-form cells to cells forming hyphae. These compounds, benzyl α-L-fucopyranoside and benzyl β-D-xylopyranoside, inhibit the morphological switching and adhesion of C. albicans to a polystyrene surface, resulting in a reduced biofilm formation. The addition of cAMP to cells treated with α-L-fucopyranoside restored the yeast-hyphae switch and the biofilm level to that of the untreated control. In the β-D-xylopyranoside treated cells, the biofilm level was only partially restored by the addition of cAMP, and these cells remained mainly as yeast-form cells.


2020 ◽  
Vol 6 (1) ◽  
pp. 13
Author(s):  
David Kadosh ◽  
Vasanthakrishna Mundodi

Many pathogenic Candida species possess the ability to undergo a reversible morphological transition from yeast to filamentous cells. In Candida albicans, the most frequently isolated human fungal pathogen, multiple lines of evidence strongly suggest that this transition is associated with virulence and pathogenicity. While it has generally been assumed that non-albicans Candida species (NACS) are less pathogenic than C. albicans, in part, because they do not filament as well, definitive evidence is lacking. Interestingly, however, a recent study suggests that filamentation of NACS is associated with reduced, rather than increased, pathogenicity. These findings, in turn, challenge conventional views and suggest that there are fundamental evolutionary differences in the morphology–pathogenicity relationship in C. albicans vs. NACS. The findings also raise many new and intriguing questions and open new avenues for future research, which are discussed.


Author(s):  
Bang Phi Cao

The NIN-like proteins (NLP) belong to RWP-RK transcription factor family and possess the similarity characteristics of NIN (Nodules INception). The NLPs regulate the expression of genes which are involved in nitrate signaling in plants. In this work, we have performed a genome-wide analysis of the NLP gene family in maize (Zea mays L.) through the bioinformatic methods. We identified a total of nine NLP encoding genes in whole genome of maize. The genomic sequences of these genes were from 2855 to 8092 nucleotides in length and contained three or four introns. Their predicted protein sizes ranged in size from 786 to 945 amino acids. The theoretical isoelectric point values of most deduced protein were less than 7. The maize NLP proteins possessed conserved regions of plant NLP at N-terminal as well as at C-terminal including the RWP-RK and PB1 domains. Based on the phylogenic analysis, we detected three current whole-genome gene duplication events which occurred in maize genome apter speciation point. All of NLP genes expressed in tissues at different development stages, from germinating seed to maturation seed were examined. The ZmNLP5, ZmNLP6 and ZmNLP7 were weakly expressed in comparison to others genes in most examined tissues.


2019 ◽  
Author(s):  
Olena P. Ishchuk ◽  
Olov Sterner ◽  
Ulf Ellervik ◽  
Sophie Manner

Abstract The opportunistic human fungal pathogen Candida albicans rely on cell morphological transitions to develop biofilm and invade the host. In the current study, we developed new regulatory molecules, which inhibit the morphological transition of C. albicans from yeast-form cells to cells forming hyphae. These compounds, benzyl α-L-fucopyranoside and benzyl β-D-xylopyranoside, inhibit the morphological switching and adhesion of C. albicans to a polystyrene surface, resulting in a reduced biofilm formation. The addition of cAMP to cells treated with α-L-fucopyranoside restored the yeast-hyphae switch and the biofilm level to that of the untreated control. In the β-D-xylopyranoside treated cells, the biofilm level was only partially restored by the addition of cAMP, and these cells remained mainly as yeast-form cells.


mBio ◽  
2018 ◽  
Vol 9 (4) ◽  
Author(s):  
Kristy Koselny ◽  
Nebibe Mutlu ◽  
Annabel Y. Minard ◽  
Anuj Kumar ◽  
Damian J. Krysan ◽  
...  

ABSTRACT Phagocytic cells such as macrophages play an important role in the host defense mechanisms mounted in response to the common human fungal pathogen Candida albicans. In vitro, C. albicans triggers macrophage NLRP3-Casp1/11-mediated pyroptosis, an inflammatory programmed cell death pathway. Here, we provide evidence that Casp1/11-dependent pyroptosis occurs in the kidney of infected mice during the early stages of infection. We have also used a genome-wide screen of nonessential Σ1278b Saccharomyces cerevisiae genes to identify genes required for yeast-triggered macrophage pyroptosis. The set of genes identified by this screen was enriched for those with functions in lipid and sterol homeostasis and trafficking. These observations led us to discover that cell surface localization and/or total levels of ergosterol correlate with the ability of S. cerevisiae, C. albicans, and Cryptococcus neoformans to trigger pyroptosis. Since the mammalian sterol cholesterol triggers NLRP3-mediated pyroptosis, we hypothesized that ergosterol may also do so. Consistent with that hypothesis, ergosterol-containing liposomes but not ergosterol-free liposomes induce pyroptosis. Cell wall mannoproteins directly bind ergosterol, and we found that Dan1, an ergosterol receptor mannoprotein, as well as specific mannosyltransferases, is required for pyroptosis, suggesting that cell wall-associated ergosterol may mediate the process. Taken together, these data indicate that ergosterol, like mammalian cholesterol, plays a direct role in yeast-mediated pyroptosis. IMPORTANCE Innate immune cells such as macrophages are key components of the host response to the human fungal pathogen Candida albicans. Macrophages undergo pyroptosis, an inflammatory, programmed cell death, in response to some species of pathogenic yeast. Prior to the work described in this report, yeast-triggered pyroptosis has been observed only in vitro; here, we show that pyroptosis occurs in the initial stages of murine kidney infection, suggesting that it plays an important role in the initial response of the innate immune system to invasive yeast infection. We also show that a key component of the fungal plasma membrane, ergosterol, directly triggers pyroptosis. Ergosterol is also present in the fungal cell wall, most likely associated with mannoproteins, and is increased in hyphal cells compared to yeast cells. Our data indicate that specific mannoproteins are required for pyroptosis. This is consistent with a potential mechanism whereby ergosterol present in the outer mannoprotein layer of the cell wall is accessible to the macrophage-mediated process. Taken together, our data provide the first evidence that ergosterol plays a direct role in the host-pathogen interactions of fungi.


Sign in / Sign up

Export Citation Format

Share Document