scholarly journals Live Imaging of Drosophila Brain Neuroblasts Reveals a Role for Lis1/Dynactin in Spindle Assembly and Mitotic Checkpoint Control

2005 ◽  
Vol 16 (11) ◽  
pp. 5127-5140 ◽  
Author(s):  
Karsten H. Siller ◽  
Madeline Serr ◽  
Ruth Steward ◽  
Tom S. Hays ◽  
Chris Q. Doe

Lis1 is required for nuclear migration in fungi, cell cycle progression in mammals, and the formation of a folded cerebral cortex in humans. Lis1 binds dynactin and the dynein motor complex, but the role of Lis1 in many dynein/dynactin-dependent processes is not clearly understood. Here we generate and/or characterize mutants for Drosophila Lis1 and a dynactin subunit, Glued, to investigate the role of Lis1/dynactin in mitotic checkpoint function. In addition, we develop an improved time-lapse video microscopy technique that allows live imaging of GFP-Lis1, GFP-Rod checkpoint protein, green fluorescent protein (GFP)-labeled chromosomes, or GFP-labeled mitotic spindle dynamics in neuroblasts within whole larval brain explants. Our mutant analyses show that Lis1/dynactin have at least two independent functions during mitosis: first promoting centrosome separation and bipolar spindle assembly during prophase/prometaphase, and subsequently generating interkinetochore tension and transporting checkpoint proteins off kinetochores during metaphase, thus promoting timely anaphase onset. Furthermore, we show that Lis1/dynactin/dynein physically associate and colocalize on centrosomes, spindle MTs, and kinetochores, and that regulation of Lis1/dynactin kinetochore localization in Drosophila differs from both Caenorhabditis elegans and mammals. We conclude that Lis1/dynactin act together to regulate multiple, independent functions in mitotic cells, including spindle formation and cell cycle checkpoint release.

2003 ◽  
Vol 23 (20) ◽  
pp. 7096-7107 ◽  
Author(s):  
Heng-Yin Yang ◽  
Yu-Ye Wen ◽  
Chih-Hsin Chen ◽  
Guillermina Lozano ◽  
Mong-Hong Lee

ABSTRACT The 14-3-3σ (sigma) protein, a negative regulator of the cell cycle, is a human mammary epithelium-specific marker that is downregulated in transformed mammary carcinoma cells. It has also been identified as a p53-inducible gene product involved in cell cycle checkpoint control after DNA damage. Although 14-3-3σ is linked to p53-regulated cell cycle checkpoint control, detailed mechanisms of how cell cycle regulation occurs remain unclear. Decreased expression of 14-3-3σ was recently reported in several types of carcinomas, further suggesting that the negative regulatory role of 14-3-3σ in the cell cycle is compromised during tumorigenesis. However, this possible tumor-suppressive role of 14-3-3σ has not yet been characterized. Here, we studied the link between 14-3-3σ activities and p53 regulation. We found that 14-3-3σ interacted with p53 in response to the DNA-damaging agent adriamycin. Importantly, 14-3-3σ expression led to stabilized expression of p53. In studying the molecular mechanism of this increased stabilization of p53, we found that 14-3-3σ antagonized the biological functions of Mdm2 by blocking Mdm2-mediated p53 ubiquitination and nuclear export. In addition, we found that 14-3-3σ facilitated the oligomerization of p53 and enhanced p53's transcriptional activity. As a target gene of p53, 14-3-3σ appears to have a positive feedback effect on p53 activity. Significantly, we also showed that overexpression of 14-3-3σ inhibited oncogene-activated tumorigenicity in a tetracycline-regulated 14-3-3σ system. These results defined an important p53 regulatory loop and suggested that 14-3-3σ expression can be considered for therapeutic intervention in cancers.


2006 ◽  
Vol 172 (5) ◽  
pp. 655-662 ◽  
Author(s):  
Dileep Varma ◽  
Denis L. Dujardin ◽  
Stephanie A. Stehman ◽  
Richard B. Vallee

Zeste white 10 (ZW10) is a mitotic checkpoint protein and the anchor for cytoplasmic dynein at mitotic kinetochores, though it is expressed throughout the cell cycle. We find that ZW10 localizes to pericentriolar membranous structures during interphase and cosediments with Golgi membranes. Dominant-negative ZW10, anti-ZW10 antibody, and ZW10 RNA interference (RNAi) caused Golgi dispersal. ZW10 RNAi also dispersed endosomes and lysosomes. Live imaging of Golgi, endosomal, and lysosomal markers after reduced ZW10 expression showed a specific decrease in the frequency of minus end–directed movements. Golgi membrane–associated dynein was markedly decreased, suggesting a role for ZW10 in dynein cargo binding during interphase. We also find ZW10 enriched at the leading edge of migrating fibroblasts, suggesting that ZW10 serves as a general regulator of dynein function throughout the cell cycle.


1995 ◽  
Vol 108 (11) ◽  
pp. 3485-3499 ◽  
Author(s):  
S.W. James ◽  
P.M. Mirabito ◽  
P.C. Scacheri ◽  
N.R. Morris

The bimE (blocked-in-mitosis) gene appears to function as a negative mitotic regulator because the recessive bimE7 mutation can override certain interphase-arresting treatments and mutations, causing abnormal induction of mitosis. We have further investigated the role of bimE in cell cycle checkpoint control by: (1) coordinately measuring mitotic induction and DNA content of bimE7 mutant cells; and (2) analyzing epistasis relationships between bimE7 and 16 different nim mutations. A combination of cytological and flow cytometric techniques was used to show that bimE7 cells at restrictive temperature (44 degrees C) undergo a normal, although somewhat slower cell cycle prior to mitotic arrest. Most bimE7 cells were fully reversible from restrictive temperature arrest, indicating that they are able to enter mitosis normally, and therefore require bimE function in order to finish mitosis. Furthermore, epistasis studies between bimE7 and mutations in cdc2 pathway components revealed that the induction of mitosis caused by inactivation of bimE requires functional p34cdc2 kinase, and that mitotic induction by bimE7 depends upon several other nim genes whose functions are not yet known. The involvement of bimE in S phase function and mitotic checkpoint control was suggested by three lines of evidence. First, at restrictive temperature the bimE7 mutation slowed the cell cycle by delaying the onset or execution of S phase. Second, at permissive temperature (30 degrees C) the bimE7 mutation conferred enhanced sensitivity to the DNA synthesis inhibitor hydroxyurea. Finally, the checkpoint linking M phase to the completion of S phase was abolished when bimE7 was combined with two nim mutations that cause arrest in G1 or S phase. A model for bimE function based on these findings is presented.


2005 ◽  
Vol 25 (23) ◽  
pp. 10315-10328 ◽  
Author(s):  
Yukinori Minoshima ◽  
Tetsuya Hori ◽  
Masahiro Okada ◽  
Hiroshi Kimura ◽  
Tokuko Haraguchi ◽  
...  

ABSTRACT We identified CENP-50 as a novel kinetochore component. We found that CENP-50 is a constitutive component of the centromere that colocalizes with CENP-A and CENP-H throughout the cell cycle in vertebrate cells. To determine the precise role of CENP-50, we examined its role in centromere function by generating a loss-of-function mutant in the chicken DT40 cell line. The CENP-50 knockout was not lethal; however, the growth rate of cells with this mutation was slower than that of wild-type cells. We observed that the time for CENP-50-deficient cells to complete mitosis was longer than that for wild-type cells. Centromeric localization of CENP-50 was abolished in both CENP-H- and CENP-I-deficient cells. Coimmunoprecipitation experiments revealed that CENP-50 interacted with the CENP-H/CENP-I complex in chicken DT40 cells. We also observed severe mitotic defects in CENP-50-deficient cells with apparent premature sister chromatid separation when the mitotic checkpoint was activated, indicating that CENP-50 is required for recovery from spindle damage.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 107-107
Author(s):  
Makiko Mochizuki-Kashio ◽  
Young Me Yoon ◽  
Theresa N Menna ◽  
Markus Grompe ◽  
Peter Kurre

Bone marrow (BM) failure is the principal source of morbidity and mortality in Fanconi Anemia (FA) patients. Recessively inherited germline mutations in one of 25 genes lead to deficits by in a pathway central to DNA crosslink repair. Functionally, FA proteins protect adult hematopoietic stem cells (HSC) from p53 mediated apoptosis elicited by alkylating agents, a range of experimental inflammatory cues or aldehyde exposure. However, these mechanisms do not seem to account for depleted hematopoietic stem and progenitor cell pools in very young FA patients, or the spontaneous, non-apoptotic and p53-independent fetal HSC deficits observed in murine models. Building on our previous observation of a quantitatively constrained fetal HSC pool in FA mice (Fancd2-/-), the current experiments reveal the specific developmental timeframe for the onset of stem cell deficits during HSC expansion in the fetal liver (FL). Cell cycle studies using an EdU/BrdU pulse chase protocol reveal delays in S-phase entry and progression at E13.5. Building on the role of FA proteins (FANCM, FANCI and FANCD2) in countering experimental replication stress (RS) in cell line models, we reasoned that rapid rates of proliferation required during expansion in the FL may similarly confer RS on the FA HSC pool. Experiments in E13.5 FL HSC confirmed the predicted increase in single stranded DNA and accumulation of nuclear replication associated protein (pRpa), along with activation of pChk1, a critical cell cycle checkpoint in cells under RS. For comparison, pChk1 in unperturbed adult cells was no different between Fancd2-/- and WT. The data are also consistent with gains in RAD51 and alkaline comet assays we previously published (Yoon et al., Stem Cell Reports 2016). The cell cycle regulator Cdkn1a (p21) is considered a canonical downstream component of the p53 response in adult FA HSC, but it also performs p53 independent functions in the RS response that coincide with its role in the nucleus. Here, we observed an increase in nuclear localization of p21 in Fancd2-/- FL HSC. TGF-β is a critical developmental morphogen that regulates p21 activity, and TGF-β inhibitors can partially reverse adult FA HSC function along with suppression of NHEJ mediated DNA repair. To test regulation of p21 in fetal HSC under RS, we first treated WT FL HSC with aphidicolin to experimentally simulate RS and found that SD208, a small molecule TGF-β-R1 inhibitor, completely rescued the p21 nuclear localization. We then went on to demonstrate that pharmacological inhibition of TGF-β signaling also reversed the nuclear p21 translocation in FA FL HSC (under physiological RS) and functionally rescued the primitive myeloid progenitor colony formation (CFU-GEMM) in vitro. Altogether, our data show that HSC deficits in FA first emerge in the fetal liver, where rapid fetal expansion causes RS that elicits pChk1 activation and nuclear p21 translocation, which restrain cell cycle progression and act as principal mechanisms limiting fetal HSC pool size in FA. Our experiments suggest a central and p53-independent role for p21 in fetal FA HSC regulation. Detailed knowledge of the physiological role of FA proteins in fetal phenotype HSC has the potential to lead to new therapies that delay or rescue hematopoietic failure in FA patients. Disclosures No relevant conflicts of interest to declare.


2008 ◽  
Vol 7 (10) ◽  
pp. 1712-1723 ◽  
Author(s):  
Karen E. Kirk ◽  
Christina Christ ◽  
Jennifer M. McGuire ◽  
Arun G. Paul ◽  
Mithaq Vahedi ◽  
...  

ABSTRACT Telomere mutants have been well studied with respect to telomerase and the role of telomere binding proteins, but they have not been used to explore how a downstream morphogenic event is related to the mutated telomeric DNA. We report that alterations at the telomeres can have profound consequences on organellar morphogenesis. Specifically, a telomerase RNA mutation termed ter1-43AA results in the loss of germ line micronuclear telomeres in the binucleate protozoan Tetrahymena thermophila. These cells also display a micronuclear mitotic arrest, characterized by an extreme delay in anaphase with an elongated, condensed chromatin and a mitotic spindle apparatus. This anaphase defect suggests telomere fusions and consequently a spindle rather than a DNA damage checkpoint. Most surprisingly, these mutants exhibit unique, dramatic defects in the formation of the cell's oral apparatus. We suggest that micronuclear telomere loss leads to a “dynamic pause” in the program of cortical development, which may reveal an unusual cell cycle checkpoint.


2020 ◽  
Vol 22 ◽  
Author(s):  
Hannah L. Smith ◽  
Harriet Southgate ◽  
Deborah A. Tweddle ◽  
Nicola J. Curtin

Abstract DNA damage response (DDR) pathway prevents high level endogenous and environmental DNA damage being replicated and passed on to the next generation of cells via an orchestrated and integrated network of cell cycle checkpoint signalling and DNA repair pathways. Depending on the type of damage, and where in the cell cycle it occurs different pathways are involved, with the ATM-CHK2-p53 pathway controlling the G1 checkpoint or ATR-CHK1-Wee1 pathway controlling the S and G2/M checkpoints. Loss of G1 checkpoint control is common in cancer through TP53, ATM mutations, Rb loss or cyclin E overexpression, providing a stronger rationale for targeting the S/G2 checkpoints. This review will focus on the ATM-CHK2-p53-p21 pathway and the ATR-CHK1-WEE1 pathway and ongoing efforts to target these pathways for patient benefit.


Sign in / Sign up

Export Citation Format

Share Document