scholarly journals A Bir1p–Sli15p Kinetochore Passenger Complex Regulates Septin Organization during Anaphase

2007 ◽  
Vol 18 (10) ◽  
pp. 3820-3834 ◽  
Author(s):  
Scott Thomas ◽  
Kenneth B. Kaplan

Kinetochore–passenger complexes in metazoans have been proposed to coordinate the segregation of chromosomes in anaphase with the induction of cytokinesis. Passenger protein homologues in the budding yeast Saccharomyces cerevisiae play a critical role early in mitosis, ensuring proper biorientation of kinetochore–microtubule attachments. Our recent work has implicated the passenger protein Bir1p (Survivin) and the inner kinetochore complex centromere binding factor 3 (CBF3) in the regulation of septin dynamics during anaphase. Here, we present data that is consistent with there being multiple passenger protein complexes. Our data show that Bir1p links together a large passenger complex containing Ndc10p, Sli15p (INCENP), and Ipl1p (Aurora B) and that the interaction between Bir1p and Sli15p is specifically involved in regulating septin dynamics during anaphase. Neither conditional alleles nor mutants of BIR1 that disrupt the interaction between Bir1p and Sli15p resulted in mono-attached kinetochores, suggesting that the Bir1p–Sli15p complex functions in anaphase and independently from Sli15p–Ipl1p complexes. We present a model for how discrete passenger complexes coordinate distinct aspects of mitosis.

Genetics ◽  
2001 ◽  
Vol 157 (4) ◽  
pp. 1493-1502
Author(s):  
Richard D Gardner ◽  
Atasi Poddar ◽  
Chris Yellman ◽  
Penny A Tavormina ◽  
M Cristina Monteagudo ◽  
...  

Abstract We have measured the activity of the spindle checkpoint in null mutants lacking kinetochore activity in the yeast Saccharomyces cerevisiae. We constructed deletion mutants for nonessential genes by one-step gene replacements. We constructed heterozygous deletions of one copy of essential genes in diploid cells and purified spores containing the deletion allele. In addition, we made gene fusions for three essential genes to target the encoded proteins for proteolysis (degron alleles). We determined that Ndc10p, Ctf13p, and Cep3p are required for checkpoint activity. In contrast, cells lacking Cbf1p, Ctf19p, Mcm21p, Slk19p, Cse4p, Mif2p, Mck1p, and Kar3p are checkpoint proficient. We conclude that the kinetochore plays a critical role in checkpoint signaling in S. cerevisiae. Spindle checkpoint activity maps to a discreet domain within the kinetochore and depends on the CBF3 protein complex.


1996 ◽  
Vol 16 (11) ◽  
pp. 6436-6443 ◽  
Author(s):  
C W Lin ◽  
B Moorefield ◽  
J Payne ◽  
P Aprikian ◽  
K Mitomo ◽  
...  

We report the cloning of RRN11, a gene coding for a 66-kDa protein essential for transcription initiation by RNA polymerase I (Pol I) in the yeast Saccharomyces cerevisiae. Rrn11 specifically complexes with two previously identified transcription factors, Rrn6 and Rrn7 (D. A. Keys, J. S. Steffan, J. A. Dodd, R. T. Yamamoto, Y. Nogi, and M. Nomura, Genes Dev. 8:2349-2362, 1994). The Rrn11-Rrn6-Rrn7 complex also binds the TATA-binding protein and is required for transcription by the core domain of the Pol I promoter. Therefore, we have designated the Rrn11-Rrn6-Rrn7-TATA-binding protein complex the yeast Pol I core factor. A two-hybrid assay was used to demonstrate involvement of short leucine heptad repeats on both Rrn11 and Rrn6 in the in vivo association of these two proteins. This assay also verified the previously described strong association between Rrn6 and Rrn7, independent of the Rrn6 leucine repeat.


Nature ◽  
2006 ◽  
Vol 440 (7084) ◽  
pp. 637-643 ◽  
Author(s):  
Nevan J. Krogan ◽  
Gerard Cagney ◽  
Haiyuan Yu ◽  
Gouqing Zhong ◽  
Xinghua Guo ◽  
...  

2004 ◽  
Vol 32 (6) ◽  
pp. 899-903 ◽  
Author(s):  
K.K. Lee ◽  
P. Prochasson ◽  
L. Florens ◽  
S.K. Swanson ◽  
M.P. Washburn ◽  
...  

Epigenetics is the alteration of phenotype without affecting the genotype. An underlying molecular mechanism of epigenetics is the changes of chromatin structure by covalent histone modifications and nucleosome reorganization. In the yeast, Saccharomyces cerevisiae, two of the most well-studied macromolecular complexes that perform these epigenetic changes are the ATP-dependent Swi/Snf chromatin-remodelling complex and the SAGA histone acetyltransferase complex. To understand fully the mechanism by which these large protein complexes perform their functions in the cell, it is crucial that all the subunits of these complexes are identified. In an attempt to identify new subunits associated with SAGA and Swi/Snf, we used tandem affinity purification, followed by a multidimensional protein identification technology to analyse the subunit composition. Our analysis identified two novel proteins, one associated with SAGA, YPL047W (Sgf11), and another associated with Swi/Snf, Rtt102.


RSC Advances ◽  
2015 ◽  
Vol 5 (111) ◽  
pp. 91785-91794 ◽  
Author(s):  
Chandrashekhar Sharan ◽  
Puneet Khandelwal ◽  
Pankaj Poddar

Proteins react with the Fe3+ ions on goethite surface, form Fe3+–protein complexes which get disassociated, and results into fresh Fe3+ ions on the surface. This process of complexation–dissociation leads to biomilling.


1996 ◽  
Vol 135 (6) ◽  
pp. 1535-1549 ◽  
Author(s):  
K L Hill ◽  
N L Catlett ◽  
L S Weisman

During cell division, cytoplasmic organelles are not synthesized de novo, rather they are replicated and partitioned between daughter cells. Partitioning of the vacuole in the budding yeast Saccharomyces cerevisiae is coordinated with the cell cycle and involves a dramatic translocation of a portion of the parental organelle from the mother cell into the bud. While the molecular mechanisms that mediate this event are unknown, the vacuole's rapid and directed movements suggest cytoskeleton involvement. To identify cytoskeletal components that function in this process, vacuole inheritance was examined in a collection of actin mutants. Six strains were identified as being defective in vacuole inheritance. Tetrad analysis verified that the defect cosegregates with the mutant actin gene. One strain with a deletion in a myosin-binding region was analyzed further. The vacuole inheritance defect in this strain appears to result from the loss of a specific actin function; the actin cytoskeleton is intact and protein targeting to the vacuole is normal. Consistent with these findings, a mutation in the actin-binding domain of Myo2p, a class V unconventional myosin, abolishes vacuole inheritance. This suggests that Myo2p serves as a molecular motor for vacuole transport along actin filaments. The location of actin and Myo2p relative to the vacuole membrane is consistent with this model. Additional studies suggest that the actin filaments used for vacuole transport are dynamic, and that profilin plays a critical role in regulating their assembly. These results present the first demonstration that specific cytoskeletal proteins function in vacuole inheritance.


Sign in / Sign up

Export Citation Format

Share Document