scholarly journals Rab8 Regulates Basolateral Secretory, But Not Recycling, Traffic at the Recycling Endosome

2008 ◽  
Vol 19 (5) ◽  
pp. 2059-2068 ◽  
Author(s):  
Lauren Henry ◽  
David R. Sheff

Rab8 is a monomeric GTPase that regulates the delivery of newly synthesized proteins to the basolateral surface in polarized epithelial cells. Recent publications have demonstrated that basolateral proteins interacting with the μ1-B clathrin adapter subunit pass through the recycling endosome (RE) en route from the TGN to the plasma membrane. Because Rab8 interacts with these basolateral proteins, these findings raise the question of whether Rab8 acts before, at, or after the RE. We find that Rab8 overexpression during the formation of polarity in MDCK cells, disrupts polarization of the cell, explaining how Rab8 mutants can disrupt basolateral endocytic and secretory traffic. However, once cells are polarized, Rab8 mutants cause mis-sorting of newly synthesized basolateral proteins such as VSV-G to the apical surface, but do not cause mis-sorting of membrane proteins already at the cell surface or in the endocytic recycling pathway. Enzymatic ablation of the RE also prevents traffic from the TGN from reaching the RE and similarly results in mis-sorting of newly synthesized VSV-G. We conclude that Rab8 regulates biosynthetic traffic through REs to the plasma membrane, but not trafficking of endocytic cargo through the RE. The data are consistent with a model in which Rab8 functions in regulating the delivery of TGN-derived cargo to REs.

Author(s):  
Greg Martin ◽  
Rohit Cariappa ◽  
Ann L. Hubbard

The plasma membrane of polarized epithelial cells is composed of two structurally and functionally distinct domains -- the apical and basolateral -- that also differ in molecular composition. The routes followed by integral membrane proteins from their site of synthesis to their site of function varies between different kinds of epithelia. Madin-Darby canine kidney (MDCK) cells deliver plasma membrane proteins directly to the correct domain, while polarized hepatocytes deliver all newly synthesized plasma membrane proteins initially to the basolateral membrane, then retrieve and redirect the apical membrane proteins. We are studying the targeting signals and delivery routes of DPPIV, a single transmembrane protein whose destination is the apical domain in polarized epithelial cells.DPPIV transfected into MDCK cells is delivered to the basolateral plasma membrane after long (13hr) treatment with Brefeldin A (BFA). After BFA’s removal these molecules are retrieved from the basolateral membrane and transcytosed to the apical plasma membrane. This protocol provides a useful model for studies of the indirect route of protein sorting in polarized epithelial cells, since DPPIV at the basolateral surface can be labeled with specific antibody and then subsequently followed in living cells.


1994 ◽  
Vol 125 (2) ◽  
pp. 313-320 ◽  
Author(s):  
T Crepaldi ◽  
A L Pollack ◽  
M Prat ◽  
A Zborek ◽  
K Mostov ◽  
...  

Scatter Factor, also known as Hepatocyte Growth Factor (SF/HGF), has pleiotropic functions including direct control of cell-cell and cell-substrate adhesion in epithelia. The subcellular localization of the SF/HGF receptor is controversial. In this work, the cell surface distribution of the SF/HGF receptor was studied in vivo in epithelial tissues and in vitro in polarized MDCK monolayers. A panel of monoclonal antibodies against the beta chain of the SF/HGF receptor stained the basolateral but not the apical surface of epithelia lining the lumen of human organs. Radiolabeled or fluorescent-tagged anti-receptor antibodies selectively bound the basolateral cell surface of MDCK cells, which form a polarized monolayer sealed by intercellular junctions, when grown on polycarbonate filters in a two-chamber culture system. The receptor was concentrated around the cell-cell contact zone, showing a distribution pattern overlapping with that of the cell adhesion molecule E-cadherin. The basolateral localization of the SF/HGF receptor was confirmed by immunoprecipitation after domain selective cell surface biotinylation. When cells were fully polarized the SF/HGF receptor became resistant to non-ionic detergents, indicating interaction with insoluble component(s). In pulse-chase labeling and surface biotinylation experiments, the newly synthesized receptor was found exclusively at the basolateral surface. We conclude that the SF/HGF receptor is selectively exposed at the basolateral plasma membrane domain of polarized epithelial cells and is targeted after synthesis to that surface by direct delivery from the trans-Golgi network.


2003 ◽  
Vol 71 (2) ◽  
pp. 739-746 ◽  
Author(s):  
Laurence Abrami ◽  
Marc Fivaz ◽  
Pierre-Etienne Glauser ◽  
Nakaba Sugimoto ◽  
Chiara Zurzolo ◽  
...  

ABSTRACT Aerolysin is one of the major virulence factors produced by Aeromonas hydrophila, a human pathogen that produces deep wound infection and gastroenteritis. The toxin interacts with target mammalian cells by binding to the glycan core of glycosylphosphatidyl inositol (GPI)-anchored proteins and subsequently forms a pore in the plasma membrane. Since epithelial cells of the intestine are the primary targets of aerolysin, we investigated its effect on three types of polarized epithelial cells: Caco-2 cells, derived from human intestine; MDCK cells, a well-characterized cell line in terms of protein targeting; and FRT cells, an unusual cell line in that it targets its GPI-anchored proteins to the basolateral plasma membrane in contrast to other epithelial cells, which target them almost exclusively to the apical surface. Surprisingly, we found that all three cell types were sensitive to the toxin from both the apical and the basolateral sides. Apical sensitivity was always higher, even for FRT cells. In contrast, FRT cells were more sensitive from the basolateral than from the apical side to the related toxin Clostridium septicum alpha-toxin, which also binds to GPI-anchored proteins but lacks the lectin binding domain found in aerolysin. These observations are consistent with the notion that a shuttling mechanism involving low-affinity interactions with surface sugars allows aerolysin to gradually move toward the membrane surface, where it can finally encounter the glycan cores of GPI-anchored proteins.


1995 ◽  
Vol 108 (1) ◽  
pp. 369-377 ◽  
Author(s):  
K.L. Soole ◽  
M.A. Jepson ◽  
G.P. Hazlewood ◽  
H.J. Gilbert ◽  
B.H. Hirst

To evaluate whether a glycosylphosphatidylinositol (GPI) anchor can function as a protein sorting signal in polarized intestinal epithelial cells, the GPI-attachment sequence from Thy-1 was fused to bacterial endoglucanase E' (EGE') from Clostridium thermocellum and polarity of secretion of the chimeric EGE'-GPI protein was evaluated. The chimeric EGE'-GPI protein was shown to be associated with a GPI anchor by TX-114 phase-partitioning and susceptibility to phosphoinositol-specific phospholipase C. In polarized MDCK cells, EGE' was localized almost exclusively to the apical cell surface, while in polarized intestinal Caco-2 cells, although 80% of the extracellular form of the enzyme was routed through the apical membrane over a 24 hour period, EGE' was also detected at the basolateral membrane. Rates of delivery of EGE'-GPI to the two membrane domains in Caco-2 cells, as determined with a biotinylation protocol, revealed apical delivery was approximately 2.5 times that of basolateral. EGE' delivered to the basolateral cell surface was transcytosed to the apical surface. These data indicate that a GPI anchor does represent a dominant apical sorting signal in intestinal epithelial cells. However, the mis-sorting of a proportion of EGE'GPI to the basolateral surface of Caco-2 cells provides an explanation for additional sorting signals in the ectodomain of some endogenous GPI-anchored proteins.


1994 ◽  
Vol 107 (7) ◽  
pp. 2005-2020 ◽  
Author(s):  
F. Garcia-del Portillo ◽  
M.G. Pucciarelli ◽  
W.A. Jefferies ◽  
B.B. Finlay

Salmonella interact with eucaryotic membranes to trigger internalization into non-phagocytic cells. In this study we examined the distribution of host plasma membrane proteins during S. typhimurium invasion of epithelial cells. Entry of S. typhimurium into HeLa epithelial cells produced extensive aggregation of cell surface class I MHC heavy chain, beta 2-microglobulin, fibronectin-receptor (alpha 5 beta 1 integrin), and hyaluronate receptor (CD-44). Other cell surface proteins such as transferrin-receptor or Thy-1 were aggregated by S. typhimurium to a much lesser extent. Capping of these plasma membrane proteins was observed in membrane ruffles localized to invading S. typhimurium and in the area surrounding these structures. In contrast, membrane ruffling induced by epidermal growth factor only produced minor aggregations of surface proteins, localized exclusively in the membrane ruffle. This result suggests that extensive redistribution of these proteins requires a signal related to bacterial invasion. This bacteria-induced process was associated with rearrangement of polymerized actin but not microtubules, since preincubation of epithelial cells with cytochalasin D blocked aggregation of these proteins while nocodazole treatment did not. Of the host surface proteins aggregated by S. typhimurium, only class I MHC heavy chain was predominantly present in the bacteria-containing vacuoles. No extensive aggregation of host plasma membrane proteins was detected when HeLa epithelial cells were infected with invasive bacteria that do not induce membrane ruffling, including Yersinia enterocolitica, a bacterium that triggers internalization via binding to beta 1 integrin, and a S. typhimurium invasion mutant that utilizes the Yersinia-internalization route. In contrast to the situation with S. typhimurium, class I MHC heavy chain was not selectively internalized into vacuoles containing these other bacteria. Extensive aggregation of host plasma membrane proteins was also not observed when other S. typhimurium mutants that are defective for invasion were used. The amount of internalized host plasma membrane proteins in the bacteria-containing vacuoles decreased over time with all invasive bacteria examined, indicating that modification of the composition of these vacuoles occurs. Therefore, our data show that S. typhimurium induces selective aggregation and internalization of host plasma membrane proteins, processes associated with the specific invasion strategy used by this bacterium to enter into epithelial cells.


2001 ◽  
Vol 280 (1) ◽  
pp. C166-C174 ◽  
Author(s):  
Ghanshyam D. Heda ◽  
Mridul Tanwani ◽  
Christopher R. Marino

Although the biosynthetic arrest of the ΔF508 mutant of cystic fibrosis transmembrane conductance regulator (CFTR) can be partially reversed by physical and chemical means, recent evidence suggests that the functional stability of the mutant protein after reaching the cell surface is compromised. To understand the molecular basis for this observation, the current study directly measured the half-life of ΔF508 and wild-type CFTR at the cell surface of transfected LLC-PK1 cells. Plasma membrane CFTR expression over time was characterized biochemically and functionally in these polarized epithelial cells. Surface biotinylation, streptavidin extraction, and quantitative immunoblot analysis determined the biochemical half-life of plasma membrane ΔF508 CFTR to be ∼4 h, whereas the plasma membrane half-life of wild-type CFTR exceeded 48 h. This difference in biochemical stability correlated with CFTR-mediated transport function. These findings indicate that the ΔF508 mutation decreases the biochemical stability of CFTR at the cell surface. We conclude that the ΔF508 mutation triggers more rapid internalization of CFTR and/or its preferential sorting to a pathway of rapid degradation.


1996 ◽  
Vol 132 (5) ◽  
pp. 813-821 ◽  
Author(s):  
P van der Bijl ◽  
M Lopes-Cardozo ◽  
G van Meer

The high concentration of glycosphingolipids on the apical surface of epithelial cells may be generated by selective transport from their site of synthesis to the cell surface. Previously, we showed that canine kidney MDCK and human intestinal Caco-2 cells converted a ceramide carrying the short fluorescent fatty acid C6-NBD to glucosylceramide (GlcCer) and sphingomyelin (SM), and that GlcCer was preferentially transported to the apical surface as compared to SM. Here, we address the point that not all glycosphingolipid classes are apically enriched in epithelia. We show that a ceramide containing the 2-hydroxy fatty acid C6OH was preferentially converted by MDCK and Caco-2 cells to galactosylceramide (GalCer) and its derivatives galabiosylceramide (Ga2Cer) and sulfatide (SGalCer) as compared to SM and GlcCer--all endogenous lipid classes of these cells. Transport to the apical and basolateral cell surface was monitored by a BSA-depletion assay. In MDCK cells, GalCer reached the cell surface with two- to sixfold lower apical/basolateral polarity than GlcCer. Remarkably, in Caco-2 cells GalCer and GlcCer displayed the same apical/basolateral polarity, but it was sixfold lower for lipids with a C6OH chain than for C6-NBD lipids. Therefore, the sorting of a sphingolipid appears to depend on lipid structure and cell type. We propose that the different ratios of gluco- and galactosphingolipid synthesis in the various epithelial tissues govern lipid sorting in the membrane of the trans Golgi network by dictating the composition of the domains from where vesicles bud to the apical and basolateral cell surface.


1988 ◽  
Vol 8 (8) ◽  
pp. 3391-3396 ◽  
Author(s):  
E T Clayson ◽  
R W Compans

The uptake of simian virus 40 (SV40) by polarized epithelial cells was investigated by growth of cells on permeable supports and inoculation on either the apical or the basolateral surface. Binding of radiolabeled SV40 occurred on the apical but not the basolateral surfaces of permissive polarized Vero C1008 cells and nonpermissive polarized MDCK cells. When similar experiments were performed on nonpolarized Vero or CV-1 cells, virus binding occurred regardless of the direction of virus input. Electron micrographs of Vero C1008 cells infected at high multiplicities revealed virions lining the surfaces of apically infected cells, while the surfaces of basolaterally infected cells were devoid of virus particles. Analysis of the binding data revealed a single class of virus receptors (9 x 10(4) per cell) with a high affinity for SV40 (Kd = 3.76 pM) on the apical surfaces of Vero C 1008 cells. Indirect immunofluorescence studies revealed that synthesis of viral capsid proteins in Vero C1008 cells occurred only when input virions had access to the apical surface. Virus yields from apically infected Vero C1008 cells were 10(5) PFU per cell, while yields obtained from basolaterally infected cells were less than one PFU per cell. These results indicate that a specific receptor for SV40 is expressed exclusively on the apical surfaces of polarized Vero C1008 cells.


1981 ◽  
Vol 89 (2) ◽  
pp. 230-239 ◽  
Author(s):  
R F Green ◽  
H K Meiss ◽  
E Rodriguez-Boulan

Enveloped viruses are excellent tools for the study of the biogenesis of epithelial polarity, because they bud asymmetrically from confluent monolayers of epithelial cells and because polarized budding is preceded by the accumulation of envelope proteins exclusively in the plasma membrane regions from which the viruses bud. In this work, three different experimental approaches showed that the carbohydrate moieties do not determine the final surface localization of either influenza (WSN strain) or vesicular stomatitis virus (VSV) envelope proteins in infected Madin-Darby Canine Kidney (MDCK) cells, as determined by immunofluorescence and immunoelectron microscopy, using ferritin as a marker. Infected concanavalin A- and ricin 1-resistant mutants of MDCK cells, with alterations in glycosylation, exhibited surface distributions of viral glycoproteins identical to those of the parental cell line, i.e., influenza envelope proteins were exclusively found in the apical surface, whereas VSV G protein was localized only in the basolateral region. MDCK cells treated with tunicamycin, which abolishes the glycosylation of viral glycoproteins, exhibited the same distribution of envelope proteins as control cells, after infection with VSF or influenza. A temperature-sensitive mutant of influenza WSN, ts3, which, when grown at the nonpermissive temperature of 39.5 degrees C, retains the sialic acid residues in the envelope glycoproteins, showed, at both 32 degrees C (permissive temperature) and 39.5 degrees C, budding polarity and viral glycoprotein distribution identical to those of the parental WSN strain, when grown in MDCK cells. These results demonstrate that carbohydrate moieties are not components of the addressing signals that determine the polarized distribution of viral envelope proteins, and possibly of the intrinsic cellular plasma membrane proteins, in the surface of epithelial cells.


Sign in / Sign up

Export Citation Format

Share Document