scholarly journals GEF-H1 Couples Nocodazole-induced Microtubule Disassembly to Cell Contractility via RhoA

2008 ◽  
Vol 19 (5) ◽  
pp. 2147-2153 ◽  
Author(s):  
Yuan-Chen Chang ◽  
Perihan Nalbant ◽  
Jörg Birkenfeld ◽  
Zee-Fen Chang ◽  
Gary M. Bokoch

The RhoA GTPase plays a vital role in assembly of contractile actin-myosin filaments (stress fibers) and of associated focal adhesion complexes of adherent monolayer cells in culture. GEF-H1 is a microtubule-associated guanine nucleotide exchange factor that activates RhoA upon release from microtubules. The overexpression of GEF-H1 deficient in microtubule binding or treatment of HeLa cells with nocodazole to induce microtubule depolymerization results in Rho-dependent actin stress fiber formation and contractile cell morphology. However, whether GEF-H1 is required and sufficient to mediate nocodazole-induced contractility remains unclear. We establish here that siRNA-mediated depletion of GEF-H1 in HeLa cells prevents nocodazole-induced cell contraction. Furthermore, the nocodazole-induced activation of RhoA and Rho-associated kinase (ROCK) that mediates phosphorylation of myosin regulatory light chain (MLC) is impaired in GEF-H1–depleted cells. Conversely, RhoA activation and contractility are rescued by reintroduction of siRNA-resistant GEF-H1. Our studies reveal a critical role for a GEF-H1/RhoA/ROCK/MLC signaling pathway in mediating nocodazole-induced cell contractility.

2002 ◽  
Vol 115 (3) ◽  
pp. 629-640 ◽  
Author(s):  
Michel Souchet ◽  
Elodie Portales-Casamar ◽  
David Mazurais ◽  
Susanne Schmidt ◽  
Isabelle Léger ◽  
...  

The Rho small GTPases are crucial proteins involved in regulation of signal transduction cascades from extracellular stimuli to cell nucleus and cytoskeleton. It has been reported that these GTPases are directly associated with cardiovascular disorders. In this context, we have searched for novel modulators of Rho GTPases, and here we describe p63RhoGEF a new Db1-like guanine nucleotide exchange factor (GEF). P63RhoGEF encodes a 63 kDa protein containing a Db1 homology domain in tandem with a pleckstrin homology domain and is most closely related to the second Rho GEF domain of Trio. Northern blot and in situ analysis have shown that p63RhoGEF is mainly expressed in heart and brain. In vitro guanine nucleotide exchange assays have shown that p63RhoGEF specifically acts on RhoA. Accordingly, p63RhoGEF expression induces RhoA-dependent stress fiber formation in fibroblasts and in H9C2 cardiac myoblasts. Moreover, we show that p63RhoGEF activation of RhoA in intact cells is dependent on the presence of the PH domain. Using a specific anti-p63RhoGEF antibody, we have detected the p63RhoGEF protein by immunocytochemistry in human heart and brain tissue sections. Confocal microscopy shows that p63RhoGEF is located in the sarcomeric I-band mainly constituted of cardiac sarcomeric actin. Together, these results show that p63RhoGEF is a RhoA-specific GEF that may play a key role in actin cytoskeleton reorganization in different tissues, especially in heart cellular morphology.


2020 ◽  
Vol 31 (5) ◽  
pp. 996-1008 ◽  
Author(s):  
Jun Matsuda ◽  
Mirela Maier ◽  
Lamine Aoudjit ◽  
Cindy Baldwin ◽  
Tomoko Takano

BackgroundPrevious studies showed that Cdc42, a member of the prototypical Rho family of small GTPases and a regulator of the actin cytoskeleton, is critical for the normal development and health of podocytes. However, upstream regulatory mechanisms for Cdc42 activity in podocytes are largely unknown.MethodsWe used a proximity-based ligation assay, BioID, to identify guanine nucleotide exchange factors that activate Cdc42 in immortalized human podocytes. We generated podocyte-specific ARHGEF7 (commonly known as β-PIX) knockout mice by crossing β-PIX floxed mice with Podocin-Cre mice. Using shRNA, we established cultured mouse podocytes with β-PIX knockdown and their controls.ResultsWe identified β-PIX as a predominant guanine nucleotide exchange factor that interacts with Cdc42 in human podocytes. Podocyte-specific β-PIX knockout mice developed progressive proteinuria and kidney failure with global or segmental glomerulosclerosis in adulthood. Glomerular podocyte density gradually decreased in podocyte-specific β-PIX knockout mice, indicating podocyte loss. Compared with controls, glomeruli from podocyte-specific β-PIX knockout mice and cultured mouse podocytes with β-PIX knockdown exhibited significant reduction in Cdc42 activity. Loss of β-PIX promoted podocyte apoptosis, which was mediated by the reduced activity of the prosurvival transcriptional regulator Yes-associated protein.ConclusionsThese findings indicate that β-PIX is required for the maintenance of podocyte architecture and glomerular function via Cdc42 and its downstream Yes-associated protein activities. This appears to be the first evidence that a Rho–guanine nucleotide exchange factor plays a critical role in podocytes.


Genetics ◽  
1990 ◽  
Vol 124 (4) ◽  
pp. 797-806 ◽  
Author(s):  
A Petitjean ◽  
F Hilger ◽  
K Tatchell

Abstract The CDC25 gene from Saccharomyces cerevisiae is an essential component of the RAS-adenylate cyclase pathway. Genetic and biochemical evidence has led to the proposal that the gene product may act upstream of RAS, possibly as a guanine nucleotide exchange factor. We report here the cloning, sequencing and characterization of four mutations in the CDC25 gene. All four are missense mutations which reside within the carboxy-terminal quarter of the single open reading frame found within the gene. Three of the four are missense mutations in the same amino acid codon. A search of protein data bases reveals that the carboxy terminus of the putative CDC25 gene product is similar to that of LTE1, a gene required for growth at low temperature and SCD25, a suppressor of cdc25. Taken together these data indicate that the carboxy terminus of CDC25 plays a critical role in the function of the CDC25 gene product and that other proteins, such as LTE1 or SCD25, may have related activities.


2009 ◽  
Vol 83 (22) ◽  
pp. 11940-11949 ◽  
Author(s):  
Kjerstin H. W. Lanke ◽  
Hilde M. van der Schaar ◽  
George A. Belov ◽  
Qian Feng ◽  
Daniël Duijsings ◽  
...  

ABSTRACT The replication of enteroviruses is sensitive to brefeldin A (BFA), an inhibitor of endoplasmic reticulum-to-Golgi network transport that blocks activation of guanine exchange factors (GEFs) of the Arf GTPases. Mammalian cells contain three BFA-sensitive Arf GEFs: GBF1, BIG1, and BIG2. Here, we show that coxsackievirus B3 (CVB3) RNA replication is insensitive to BFA in MDCK cells, which contain a BFA-resistant GBF1 due to mutation M832L. Further evidence for a critical role of GBF1 stems from the observations that viral RNA replication is inhibited upon knockdown of GBF1 by RNA interference and that replication in the presence of BFA is rescued upon overexpression of active, but not inactive, GBF1. Overexpression of Arf proteins or Rab1B, a GTPase that induces GBF1 recruitment to membranes, failed to rescue RNA replication in the presence of BFA. Additionally, the importance of the interaction between enterovirus protein 3A and GBF1 for viral RNA replication was investigated. For this, the rescue from BFA inhibition of wild-type (wt) replicons and that of mutant replicons of both CVB3 and poliovirus (PV) carrying a 3A protein that is impaired in binding GBF1 were compared. The BFA-resistant GBF1-M832L protein efficiently rescued RNA replication of both wt and mutant CVB3 and PV replicons in the presence of BFA. However, another BFA-resistant GBF1 protein, GBF1-A795E, also efficiently rescued RNA replication of the wt replicons, but not that of mutant replicons, in the presence of BFA. In conclusion, this study identifies a critical role for GBF1 in CVB3 RNA replication, but the importance of the 3A-GBF1 interaction requires further study.


eLife ◽  
2015 ◽  
Vol 4 ◽  
Author(s):  
Ying-Ju Chang ◽  
Scott Pownall ◽  
Thomas E Jensen ◽  
Samar Mouaaz ◽  
Warren Foltz ◽  
...  

Adipose tissue is crucial for the maintenance of energy and metabolic homeostasis and its deregulation can lead to obesity and type II diabetes (T2D). Using gene disruption in the mouse, we discovered a function for a RhoA-specific guanine nucleotide exchange factor PDZ-RhoGEF (Arhgef11) in white adipose tissue biology. While PDZ-RhoGEF was dispensable for a number of RhoA signaling-mediated processes in mouse embryonic fibroblasts, including stress fiber formation and cell migration, it's deletion led to a reduction in their proliferative potential. On a whole organism level, PDZ-RhoGEF deletion resulted in an acute increase in energy expenditure, selectively impaired early adipose tissue development and decreased adiposity in adults. PDZ-RhoGEF-deficient mice were protected from diet-induced obesity and T2D. Mechanistically, PDZ-RhoGEF enhanced insulin/IGF-1 signaling in adipose tissue by controlling ROCK-dependent phosphorylation of the insulin receptor substrate-1 (IRS-1). Our results demonstrate that PDZ-RhoGEF acts as a key determinant of mammalian metabolism and obesity-associated pathologies.


2017 ◽  
Vol 65 (8) ◽  
pp. 1089-1092 ◽  
Author(s):  
Pratap Karki ◽  
Anna A Birukova

The endothelial barrier function regulated by the cytoskeletal reorganizations has been implicated in the pathogenesis of multiple lung diseases including asthma, sepsis, edema, and acute respiratory distress syndrome. The extensive studies have established that activation of small GTPase Rac is a key mechanism in endothelial barrier protection but the role of microtubules-associated Rac in the endothelial functions remains poorly understood. With the emerging evidences that microtubules disassembly also plays a critical role in actin cytoskeleton remodeling leading to endothelial permeability, the knowledge on microtubules-mediated regulation of endothelial barrier is imperative to better understand the etiology of lung injuries as well as to develop novel therapeutics against these disorders. In this regard, our recent studies have revealed some novel aspects of microtubules-mediated regulation of endothelial barrier functions and unraveled a putative role of Rac-specific guanine nucleotide exchange factor Asef in mediating the barrier protective effects of hepatocyte growth factor. In this review, we will discuss the role of this novel Rac activator Asef in endothelial barrier protection and its regulation by microtubules.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Junyi Tang ◽  
Kehua Fang ◽  
Chang Li ◽  
Xiaotian Chang

Background. Rho guanine nucleotide exchange factor 10-like protein (ARHGEF10L) is a member of the guanine nucleotide exchange factor family, which regulates Rho GTPase activities, thus contributing to tumorigenesis. Our previous study demonstrated a strong association between the ARHGEF10L gene and the risk of cervical carcinoma. This study investigated the pathogenic role and mechanism of ARHGEF10L in cervical tumors. Methods. The HeLa cell line, which was derived from cervical carcinoma, was transfected with ARHGEF10L-overexpressing plasmids or anti-ARHGEF10L siRNA. Cell counting kit-8 assays, wound-healing assays, and cell apoptosis assays were performed to investigate the effects of ARHGEF10L on cell activities. A Rho pull-down assay and RNA-sequencing analysis were performed to investigate the pathogenic pathway of ARHGEF10L involvement in cervical tumors. Results. ARHGEF10L overexpression promoted cell proliferation and migration, reduced cell apoptosis, and induced epithelial-to-mesenchymal transition (EMT) via downregulation of E-cadherin and upregulation of N-cadherin and Slug in transfected HeLa cells. The overexpression of ARHGEF10L also upregulated GTP-RhoA, ROCK1, and phospho-ezrin/radixin/moesin (ERM) expression in HeLa cells. RNA-sequencing analysis detected altered transcription of 31 genes in HeLa cells with ARHGEF10L overexpression. Kyoto Encyclopedia of Genes and Genomes (KEGG) and gene ontology (GO) pathway analyses identified significant differences in cyclin-dependent protein serine/threonine kinase activity, cell responses to vitamin A, and Toll-like receptor signaling pathways. Both real-time PCR and Western blotting verified the increased expression of heat shock 70 kDa protein 6 (HSPA6) in ARHGEF10L-overexpressing HeLa cells. Since we reported that ARHGEF10L played a role through RhoA-ROCK1-ERM signaling, an important pathway in tumorigenesis, and stimulated EMT and HSPA6 expression in liver tumors and gastric tumor cells, we suggest that ARHGEF10L is a novel oncogene in many tumors.


2021 ◽  
Vol 17 (1) ◽  
pp. e1008548
Author(s):  
Simon Marlaire ◽  
Christoph Dehio

Bartonellae are Gram-negative facultative-intracellular pathogens that use a type-IV-secretion system (T4SS) to translocate a cocktail of Bartonella effector proteins (Beps) into host cells to modulate diverse cellular functions. BepC was initially reported to act in concert with BepF in triggering major actin cytoskeletal rearrangements that result in the internalization of a large bacterial aggregate by the so-called ‘invasome’. Later, infection studies with bepC deletion mutants and ectopic expression of BepC have implicated this effector in triggering an actin-dependent cell contractility phenotype characterized by fragmentation of migrating cells due to deficient rear detachment at the trailing edge, and BepE was shown to counterbalance this remarkable phenotype. However, the molecular mechanism of how BepC triggers cytoskeletal changes and the host factors involved remained elusive. Using infection assays, we show here that T4SS-mediated transfer of BepC is sufficient to trigger stress fiber formation in non-migrating epithelial cells and additionally cell fragmentation in migrating endothelial cells. Interactomic analysis revealed binding of BepC to a complex of the Rho guanine nucleotide exchange factor GEF-H1 and the serine/threonine-protein kinase MRCKα. Knock-out cell lines revealed that only GEF-H1 is required for mediating BepC-triggered stress fiber formation and inhibitor studies implicated activation of the RhoA/ROCK pathway downstream of GEF-H1. Ectopic co-expression of tagged versions of GEF-H1 and BepC truncations revealed that the C-terminal ‘Bep intracellular delivery’ (BID) domain facilitated anchorage of BepC to the plasma membrane, whereas the N-terminal ‘filamentation induced by cAMP’ (FIC) domain facilitated binding of GEF-H1. While FIC domains typically mediate post-translational modifications, most prominently AMPylation, a mutant with quadruple amino acid exchanges in the putative active site indicated that the BepC FIC domain acts in a non-catalytic manner to activate GEF-H1. Our data support a model in which BepC activates the RhoA/ROCK pathway by re-localization of GEF-H1 from microtubules to the plasma membrane.


2004 ◽  
Vol 24 (15) ◽  
pp. 6690-6700 ◽  
Author(s):  
Catherine Hogan ◽  
Norberto Serpente ◽  
Patricia Cogram ◽  
Catherine Rose Hosking ◽  
Carl Uli Bialucha ◽  
...  

ABSTRACT In epithelial tissues, cells are linked to their neighbors through specialized cell-cell adhesion proteins. E-cadherin is one of the most important membrane proteins for the establishment of intimate cell-cell contacts, but the molecular mechanism by which it is recruited to contact sites is largely unknown. We report here that the cytoplasmic domain of E-cadherin interacts with C3G, a guanine nucleotide exchange factor for Rap1. In epithelial cell cultures, ligation of the extracellular domain of E-cadherin enhances Rap1 activity, which in turn is necessary for the proper targeting of E-cadherin molecules to maturing cell-cell contacts. Furthermore, our data suggest that Cdc42 functions downstream of Rap1 in this process. We conclude that Rap1 plays a vital role in the establishment of E-cadherin-based cell-cell adhesion.


Sign in / Sign up

Export Citation Format

Share Document