scholarly journals Swf1p, a Member of the DHHC-CRD Family of Palmitoyltransferases, Regulates the Actin Cytoskeleton and Polarized Secretion Independently of Its DHHC Motif

2008 ◽  
Vol 19 (10) ◽  
pp. 4454-4468 ◽  
Author(s):  
Shubha A. Dighe ◽  
Keith G. Kozminski

Rho and Rab family GTPases play a key role in cytoskeletal organization and vesicular trafficking, but the exact mechanisms by which these GTPases regulate polarized cell growth are incompletely understood. A previous screen for genes that interact with CDC42, which encodes a Rho GTPase, found SWF1/PSL10. Here, we show Swf1p, a member of the DHHC-CRD family of palmitoyltransferases, localizes to actin cables and cortical actin patches in Saccharomyces cerevisiae. Deletion of SWF1 results in misorganization of the actin cytoskeleton and decreased stability of actin filaments in vivo. Cdc42p localization depends upon Swf1p primarily after bud emergence. Importantly, we revealed that the actin regulating activity of Swf1p is independent of its DHHC motif. A swf1 mutant, in which alanine substituted for the cysteine required for the palmitoylation activity of DHHC-CRD proteins, displayed wild-type actin organization and Cdc42p localization. Bgl2p-marked exocytosis was found wild type in this mutant, although invertase secretion was impaired. These data indicate Swf1p has at least two distinct functions, one of which regulates actin organization and Bgl2p-marked secretion. This report is the first to link the function of a DHHC-CRD protein to Cdc42p and the regulation of the actin cytoskeleton.

2000 ◽  
Vol 20 (17) ◽  
pp. 6244-6258 ◽  
Author(s):  
Malika Jaquenoud ◽  
Matthias Peter

ABSTRACT Gic2p is a Cdc42p effector which functions during cytoskeletal organization at bud emergence and in response to pheromones, but it is not understood how Gic2p interacts with the actin cytoskeleton. Here we show that Gic2p displayed multiple genetic interactions with Bni1p, Bud6p (Aip3p), and Spa2p, suggesting that Gic2p may regulate their function in vivo. In support of this idea, Gic2p cofractionated with Bud6p and Spa2p and interacted with Bud6p by coimmunoprecipitation and two-hybrid analysis. Importantly, localization of Bni1p and Bud6p to the incipient bud site was dependent on active Cdc42p and the Gic proteins but did not require an intact actin cytoskeleton. We identified a conserved domain in Gic2p which was necessary for its polarization function but dispensable for binding to Cdc42p-GTP and its localization to the site of polarization. Expression of a mutant Gic2p harboring a single-amino-acid substitution in this domain (Gic2pW23A) interfered with polarized growth in a dominant-negative manner and prevented recruitment of Bni1p and Bud6p to the incipient bud site. We propose that at bud emergence, Gic2p functions as an adaptor which may link activated Cdc42p to components involved in actin organization and polarized growth, including Bni1p, Spa2p, and Bud6p.


Author(s):  
Tomonori Okazaki ◽  
Daichi Saito ◽  
Masatoshi Inden ◽  
Kotoku Kawaguchi ◽  
Sayuri Wakimoto ◽  
...  

Abstract Moesin is a member of the ezrin, radixin and moesin (ERM) proteins that are involved in the formation and/or maintenance of cortical actin organization through their cross-linking activity between actin filaments and proteins located on the plasma membranes as well as through regulation of small GTPase activities. Microglia, immune cells in the central nervous system, show dynamic reorganization of the actin cytoskeleton in their process elongation and retraction as well as phagocytosis and migration. In microglia, moesin is the predominant ERM protein. Here, we show that microglial activation after systemic lipopolysaccharide application is partly inhibited in moesin knockout (Msn-KO) mice. We prepared primary microglia from wild-type and Msn-KO mice, and studied them to compare their phenotypes accompanying morphological changes and reorganization of the actin cytoskeleton induced by UDP-stimulated phagocytosis and ADP-stimulated migration. The Msn-KO microglia showed higher phagocytotic activity in the absence of UDP, which was not further increased by the treatment with UDP. They also exhibited decreased ADP-stimulated migration activities compared with the wild-type microglia. However, the Msn-KO microglia retained their ability to secrete tumor necrosis factor α and nitric oxide in response to lipopolysaccharide.


2007 ◽  
Vol 18 (10) ◽  
pp. 4155-4167 ◽  
Author(s):  
Sophie G. Martin ◽  
Sergio A. Rincón ◽  
Roshni Basu ◽  
Pilar Pérez ◽  
Fred Chang

Formins are conserved actin nucleators responsible for the assembly of diverse actin structures. Many formins are controlled through an autoinhibitory mechanism involving the interaction of a C-terminal DAD sequence with an N-terminal DID sequence. Here, we show that the fission yeast formin for3p, which mediates actin cable assembly and polarized cell growth, is regulated by a similar autoinhibitory mechanism in vivo. Multiple sites govern for3p localization to cell tips. The localization and activity of for3p are inhibited by an intramolecular interaction of divergent DAD and DID-like sequences. A for3p DAD mutant expressed at endogenous levels produces more robust actin cables, which appear to have normal organization and dynamics. We identify cdc42p as the primary Rho GTPase involved in actin cable assembly and for3p regulation. Both cdc42p, which binds at the N terminus of for3p, and bud6p, which binds near the C-terminal DAD-like sequence, are needed for for3p localization and full activity, but a mutation in the for3p DAD restores for3p localization and other phenotypes of cdc42 and bud6 mutants. In particular, the for3p DAD mutation suppresses the bipolar growth (NETO) defect of bud6Δ cells. These findings suggest that cdc42p and bud6p activate for3p by relieving autoinhibition.


2003 ◽  
Vol 162 (4) ◽  
pp. 635-646 ◽  
Author(s):  
Xiang-Dong Gao ◽  
Stefan Albert ◽  
Serguei E. Tcheperegine ◽  
Christopher G. Burd ◽  
Dieter Gallwitz ◽  
...  

Polarized growth in Saccharomyces cerevisiae is thought to occur by the transport of post-Golgi vesicles along actin cables to the daughter cell, and the subsequent fusion of the vesicles with the plasma membrane. Previously, we have shown that Msb3p and Msb4p genetically interact with Cdc42p and display a GTPase-activating protein (GAP) activity toward a number of Rab GTPases in vitro. We show here that Msb3p and Msb4p regulate exocytosis by functioning as GAPs for Sec4p in vivo. Cells lacking the GAP activity of Msb3p and Msb4p displayed secretory defects, including the accumulation of vesicles of 80–100 nm in diameter. Interestingly, the GAP activity of Msb3p and Msb4p was also required for efficient polarization of the actin patches and for the suppression of the actin-organization defects in cdc42 mutants. Using a strain defective in polarized secretion and actin-patch organization, we showed that a change in actin-patch organization could be a consequence of the fusion of mistargeted vesicles with the plasma membrane.


2012 ◽  
Vol 23 (19) ◽  
pp. 3814-3826 ◽  
Author(s):  
Hsin Chen ◽  
Chun-Chen Kuo ◽  
Hui Kang ◽  
Audrey S. Howell ◽  
Trevin R. Zyla ◽  
...  

Actin filaments are dynamically reorganized to accommodate ever-changing cellular needs for intracellular transport, morphogenesis, and migration. Formins, a major family of actin nucleators, are believed to function as direct effectors of Rho GTPases, such as the polarity regulator Cdc42p. However, the presence of extensive redundancy has made it difficult to assess the in vivo significance of the low-affinity Rho GTPase–formin interaction and specifically whether Cdc42p polarizes the actin cytoskeleton via direct formin binding. Here we exploit a synthetically rewired budding yeast strain to eliminate the redundancy, making regulation of the formin Bni1p by Cdc42p essential for viability. Surprisingly, we find that direct Cdc42p–Bni1p interaction is dispensable for Bni1p regulation. Alternative paths linking Cdc42p and Bni1p via “polarisome” components Spa2p and Bud6p are also collectively dispensable. We identify a novel regulatory input to Bni1p acting through the Cdc42p effector, Gic2p. This pathway is sufficient to localize Bni1p to the sites of Cdc42p action and promotes a polarized actin organization in both rewired and wild-type contexts. We suggest that an indirect mechanism linking Rho GTPases and formins via Rho effectors may provide finer spatiotemporal control for the formin-nucleated actin cytoskeleton.


2001 ◽  
Vol 114 (18) ◽  
pp. 3359-3366 ◽  
Author(s):  
Gary Davidson ◽  
Rosanna Dono ◽  
Rolf Zeller

To examine the potential role of fibroblast growth factor (FGF) signalling during cell differentiation, we used conditionally immortalised podocyte cells isolated from kidneys of Fgf2 mutant and wild-type mice. Wild-type mouse podocyte cells upregulate FGF2 expression when differentiating in culture, as do maturing podocytes in vivo. Differentiating wild-type mouse podocyte cells undergo an epithelial to mesenchymal-like transition, reorganise their actin cytoskeleton and extend actin-based cellular processes; all of these activities are similar to the activity of podocytes in vivo. Molecular analysis of Fgf2 mutant mouse podocyte cells reveals a general disruption of FGF signalling as expression of Fgf7 and Fgf10 are also downregulated. These FGF mutant mouse podocyte cells in culture fail to activate mesenchymal markers and their post-mitotic differentiation is blocked. Furthermore, mutant mouse podocyte cells in culture fail to reorganise their actin cytoskeleton and form actin-based cellular processes. These studies show that FGF signalling is required by cultured podocytes to undergo the epithelial to mesenchymal-like changes necessary for terminal differentiation. Together with other studies, these results point to a general role for FGF signalling in regulating cell differentiation and formation of actin-based cellular processes during morphogenesis.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 253-253
Author(s):  
Yanfeng Wang ◽  
Lurong Lian ◽  
John H. Hartwig ◽  
Charles S. Abrams

Abstract Pleckstrin makes up approximately one percent of total cellular protein within platelets and leukocytes, a protein best known for containing the two prototypic Pleckstrin Homology (PH) domains. Following platelet activation, PKC rapidly phosphorylates pleckstrin, inducing it to bind membrane bound phospholipids such as phosphatidylinositol 4,5 bisphosphate (PIP2). Platelets also contain a widely expressed paralog of pleckstrin, called pleckstrin-2. Although the activity of pleckstrin is regulated through protein phosphorylation, pleckstrin-2 is not a phosphoprotein, but is instead activated by binding a specific PI3K generated phospholipid, phosphatidylinositol 3,4 bisphosphate (PI3,4P2). To understand the true in vivo role of these two proteins, we genetically engineered mice to lack individual or both pleckstrin isoforms. Pleckstrinnull platelets exhibit mildly impaired aggregation in response to thrombin, but fail to aggregate in response to thrombin in the presence of PI3K inhibitors. This suggests that a PI3K-dependent signaling pathway compensates for the loss of pleckstrin. Platelets lacking pleckstrin exhibit a marked defect in the secretion of delta and alpha granules following exposure to the PKC stimulant, PMA. Although pleckstrin-null platelets centralized and merged their granules in response to stimulation of PKC, they failed to empty their contents into the open canalicular system. These results differ from that seen with platelets lacking the other pleckstrin isoform, pleckstrin-2. Platelets derived from pleckstrin-2 null mice secrete and aggregate normally in response to thrombin and PMA. In addition, unlike the effect seen on pleckstrin knockout platelets, inhibitors of PI3K had no effect on the aggregation or secretion of pleckstrin-2 knockout platelets. Also in contrast to pleckstrin knockout platelets, pleckstrin-2 null platelets fail to secrete in response to thrombin when they were exposed to inhibitors of either PLC or PKC. These data demonstrate that pleckstrin-2 knockout platelets compensate for their secretion defect by a pathway dependent on PLC and PKC. It is notable that PI3K or PKC inhibitors only minimally affected the thrombin-induced secretion of wild-type platelets unless both inhibitors were used together. Together, these results suggest that platelets utilize parallel signaling pathways, one dependent on PKC and pleckstrin, and the other on PI3K and pleckstrin-2. Studies in platelets and neuronal cells suggest that disassembly of the actin cytoskeleton is required for secretion. Since overexpression studies have suggested that both pleckstrin and pleckstrin-2 can modulate the actin cytoskeleton, we hypothesized that both pleckstrin isoforms affect secretion through an actin-dependent pathway. To test this hypothesis, we analyzed the effect of the pleckstrin and pleckstrin-2 null mutations on actin organization within platelets. When pleckstrin null platelets were allowed to adhere to immobilized fibrinogen, or when they were flowed over collagen-coated surfaces, they exhibited impaired adherence and spreading. Phalloidin staining indicated that they also assembled less F-actin than normal platelets. Similarly, platelets lacking pleckstrin-2 also adhered and spread poorly. Since we have shown that pleckstrin and pleckstrin-2 perform analogous roles in complementary signaling pathways, we bred mice to generate a murine lacking both pleckstrin isoforms. Platelets lacking both pleckstrin and pleckstrin-2 exhibited a marked spreading defect in response to PMA (0% of control) or thrombin (18% of control). Following stimulation with PMA, platelets containing the double null mutation also failed to increase in their F-actin content during the spreading process (8% of control). Electron micrographs of platelets lacking both pleckstrin and pleckstrin-2 revealed that the double null platelets fail to extend any broad lamellipodia, and instead, only extended small membrane blebs. These data show that pleckstrin and pleckstrin-2 are absolutely essential for the cytoskeletal organization that occurs during platelet adhesion. These data also demonstrate that adhesion-induced cytoskeletal changes within platelets can be mediated by one of two parallel pathways, the first involving PKC and pleckstrin, and the second involving PI3K and pleckstrin-2.


1997 ◽  
Vol 17 (8) ◽  
pp. 4294-4304 ◽  
Author(s):  
H Y Tang ◽  
A Munn ◽  
M Cai

Several proteins from diverse organisms have been shown to share a region of sequence homology with the mammalian epidermal growth factor receptor tyrosine kinase substrate Eps15. Included in this new protein family, termed EH domain proteins, are two yeast proteins, Pan1p and End3p. We have shown previously that Pan1p is required for normal organization of the actin cytoskeleton and that it associates with the actin patches on the cell cortex. End3p has been shown by others to be an important factor in the process of endocytosis. End3p is also known to be required for the organization of the actin cytoskeleton. Here we report that Pan1p and End3p act as a complex in vivo. Using the pan1-4 mutant which we isolated and characterized previously, the END3 gene was identified as a suppressor of pan1-4 when overexpressed. Suppression of the pan1-4 mutation by multicopy END3 required the presence of the mutant Pan1p protein. Coimmunoprecipitation and two-hybrid protein interaction experiments indicated that Pan1p and End3p associate with each other. The localization of Pan1p to the cortical actin cytoskeleton became weakened in the end3 mutant at the permissive temperature and undetectable at the restrictive temperature, suggesting that End3p may be important for proper localization of Pan1p to the cortical actin cytoskeleton. The finding that the pan1-4 mutant was defective in endocytosis as severely as the end3 mutant under nonpermissive conditions supports the notion that the association between Pan1p and End3p is of physiological relevance. Together with results of earlier reports, these results provide strong evidence suggesting that Pan1p and End3p are the components of a complex that has essential functions in both the organization of cell membrane-associated actin cytoskeleton and the process of endocytosis.


2010 ◽  
Vol 9 (7) ◽  
pp. 1029-1038 ◽  
Author(s):  
Rajesh N. Patkar ◽  
Angayarkanni Suresh ◽  
Naweed I. Naqvi

ABSTRACT Polarized growth is essential for cellular development and function and requires coordinated organization of the cytoskeletal elements. Tea4, an important polarity determinant, regulates localized F-actin assembly and bipolar growth in fission yeast and directional mycelial growth in Aspergillus. Here, we characterize Tea4 in the rice blast fungus Magnaporthe oryzae (MoTea4). Similar to its orthologs, MoTea4-green fluorescent protein (MoTea4-GFP) showed punctate distribution confined to growth zones, particularly in the mycelial tips, aerial hyphae, conidiophores, conidia, and infection structures (appressoria) in Magnaporthe. MoTea4 was dispensable for vegetative growth in Magnaporthe. However, loss of MoTea4 led to a zigzag morphology in the aerial hyphae and a huge reduction in conidiation. The majority of the tea4Δ conidia were two celled, as opposed to the tricellular conidia in the wild type. Structure-function analysis indicated that the SH3 and coiled-coil domains of MoTea4 are necessary for proper conidiation in Magnaporthe. The tea4Δ conidia failed to produce proper appressoria and consequently failed to infect the host plants. The tea4Δ conidia and germ tubes showed disorganized F-actin structures with significantly reduced numbers of cortical actin patches. Compared to the wild-type conidia, the tea4Δ conidia showed aberrant germination, poor cytoplasmic streaming, and persistent accumulation of lipid droplets, likely due to the impaired F-actin cytoskeleton. Latrunculin A treatment of germinating wild-type conidia showed that an intact F-actin cytoskeleton is indeed essential for appressorial development in Magnaporthe. We show that MoTea4 plays an important role in organizing the F-actin cytoskeleton and is essentially required for polarized growth and morphogenesis during asexual and pathogenic development in Magnaporthe.


2011 ◽  
Vol 22 (21) ◽  
pp. 4016-4028 ◽  
Author(s):  
Brian R. Graziano ◽  
Amy Grace DuPage ◽  
Alphee Michelot ◽  
Dennis Breitsprecher ◽  
James B. Moseley ◽  
...  

Formins are a conserved family of actin assembly–promoting factors with diverse biological roles, but how their activities are regulated in vivo is not well understood. In Saccharomyces cerevisiae, the formins Bni1 and Bnr1 are required for the assembly of actin cables and polarized cell growth. Proper cable assembly further requires Bud6. Previously it was shown that Bud6 enhances Bni1-mediated actin assembly in vitro, but the biochemical mechanism and in vivo role of this activity were left unclear. Here we demonstrate that Bud6 specifically stimulates the nucleation rather than the elongation phase of Bni1-mediated actin assembly, defining Bud6 as a nucleation-promoting factor (NPF) and distinguishing its effects from those of profilin. We generated alleles of Bud6 that uncouple its interactions with Bni1 and G-actin and found that both interactions are critical for NPF activity. Our data indicate that Bud6 promotes filament nucleation by recruiting actin monomers to Bni1. Genetic analysis of the same alleles showed that Bud6 regulation of formin activity is critical for normal levels of actin cable assembly in vivo. Our results raise important mechanistic parallels between Bud6 and WASP, as well as between Bud6 and other NPFs that interact with formins such as Spire.


Sign in / Sign up

Export Citation Format

Share Document