scholarly journals The microtubule lattice and plus-end association of Drosophila Mini spindles is spatially regulated to fine-tune microtubule dynamics

2011 ◽  
Vol 22 (22) ◽  
pp. 4343-4361 ◽  
Author(s):  
Joshua D. Currie ◽  
Shannon Stewman ◽  
Gregory Schimizzi ◽  
Kevin C. Slep ◽  
Ao Ma ◽  
...  

Individual microtubules (MTs) exhibit dynamic instability, a behavior in which they cycle between phases of growth and shrinkage while the total amount of MT polymer remains constant. Dynamic instability is promoted by the conserved XMAP215/Dis1 family of microtubule-associated proteins (MAPs). In this study, we conducted an in vivo structure–function analysis of the Drosophila homologue Mini spindles (Msps). Msps exhibits EB1-dependent and spatially regulated MT localization, targeting to microtubule plus ends in the cell interior and decorating the lattice of growing and shrinking microtubules in the cell periphery. RNA interference rescue experiments revealed that the NH2-terminal four TOG domains of Msps function as paired units and were sufficient to promote microtubule dynamics and EB1 comet formation. We also identified TOG5 and novel inter-TOG linker motifs that are required for targeting Msps to the microtubule lattice. These novel microtubule contact sites are necessary for the interplay between the conserved TOG domains and inter-TOG MT binding that underlies the ability of Msps to promote MT dynamic instability.

1998 ◽  
Vol 111 (3) ◽  
pp. 303-312 ◽  
Author(s):  
A. Blocker ◽  
G. Griffiths ◽  
J.C. Olivo ◽  
A.A. Hyman ◽  
F.F. Severin

We have shown previously that intracellular phagosome movement requires microtubules. Here we provide evidence that within cells phagosomes display two different kinds of microtubule-based movements in approximately equal proportions. The first type occurs predominantly in the cell periphery, often shortly after the phagosome is formed, and at speeds below 0.1 microm/second. The second is faster (0.2-1.5 micron/second) and occurs mainly after phagosomes have reached the cell interior. Treating cells with nanomolar concentrations of taxol or nocodazole alters microtubule dynamics without affecting either total polymer mass or microtubule organisation. Such treatments slow the accumulation of phagosomes in the perinuclear region and reduce the number of slow movements by up to 50% without affecting the frequency of fast movements. This suggests that a proportion of slow movements are mediated by microtubule dynamics while fast movements are powered by microtubule motors. In macrophages, interphase microtubules radiate from the microtubule organising centre with their plus-end towards the cell periphery. To understand the behaviour of ‘early’ phagosomes at the cell periphery we investigated their ability to bind microtubule plus-ends in vitro. We show that early phagosomes have a strong preference for microtubule plus-ends, whereas ‘late’ phagosomes do not, and that plus-end affinity requires the presence of microtubule-associated proteins within cytosol. We suggest that phagosomes can bind to the plus-ends of dynamic microtubules and move by following their shrinkage or growth.


2006 ◽  
Vol 172 (7) ◽  
pp. 1009-1022 ◽  
Author(s):  
Jawdat Al-Bassam ◽  
Mark van Breugel ◽  
Stephen C. Harrison ◽  
Anthony Hyman

Stu2p from budding yeast belongs to the conserved Dis1/XMAP215 family of microtubule-associated proteins (MAPs). The common feature of proteins in this family is the presence of HEAT repeat–containing TOG domains near the NH2 terminus. We have investigated the functions of the two TOG domains of Stu2p in vivo and in vitro. Our data suggest that Stu2p regulates microtubule dynamics through two separate activities. First, Stu2p binds to a single free tubulin heterodimer through its first TOG domain. A large conformational transition in homodimeric Stu2p from an open structure to a closed one accompanies the capture of a single free tubulin heterodimer. Second, Stu2p has the capacity to associate directly with microtubule ends, at least in part, through its second TOG domain. These two properties lead to the stabilization of microtubules in vivo, perhaps by the loading of tubulin dimers at microtubule ends. We suggest that this mechanism of microtubule regulation is a conserved feature of the Dis1/XMAP215 family of MAPs.


1995 ◽  
Vol 108 (4) ◽  
pp. 1679-1689 ◽  
Author(s):  
R. Dhamodharan ◽  
P. Wadsworth

Heat-stable brain microtubule associated proteins (MAPs) and purified microtubule associated protein 2 (MAP-2) were microinjected into cultured BSC-1 cells which had been previously injected with rhodamine-labeled tubulin. The dynamic instability behavior of individual microtubules was then examined using low-light-level fluorescence microscopy and quantitative microtubule tracking methods. Both MAP preparations suppressed microtubule dynamics in vivo, by reducing the average rate and extent of both growing and shortening events. The average duration of growing events was not affected. When measured as events/unit time, heat-stable MAPs and MAP-2 did not significantly alter the frequency of rescue; the frequency of catastrophe was decreased approximately two-fold by heat-stable MAPs and MAP-2. When transition frequencies were calculated as events/unit distance, both MAP preparations increased the frequency of rescue, without altering the frequency of catastrophe. The percentage of total time spent in the phases of growth, shrink and pause was determined. Both MAP-2 and heat-stable MAPs decreased the percentage of time spent shortening, increased the percentage of time spent paused, and had no effect on percentage of time spent growing. Heat-stable MAPs increased the average pause duration, decreased the average number of events per minute per microtubule and increased the probability that a paused microtubule would switch to growing rather than shortening. The results demonstrate that addition of MAPs to living cells reduces the dynamic behavior of individual microtubules primarily by suppressing the magnitude of dynamic events and increasing the time spent in pause, where no change in the microtubule length can be detected. The results further suggest that the expression of MAPs directly contributes to cell type-specific microtubule dynamic behavior.


2000 ◽  
Vol 6 (S2) ◽  
pp. 80-81
Author(s):  
L. Cassimeris ◽  
C. Spittle ◽  
M. Kratzer

The mitotic spindle is responsible for chromosome movement during mitosis. It is composed of a dynamic array of microtubules and associated proteins whose assembly and constant turnover are required for both spindle formation and chromosome movement. Because microtubule assembly and turnover are necessary for chromosome segregation, we are studying how cells regulate microtubule dynamics. Microtubules are polarized polymers composed of tubulin subunits; they assemble by a process of dynamic instability where individual microtubules exist in persistent phases of elongation or rapid shortening with abrupt transitions between these two states. The switch from elongation to shortening is termed catastrophe, and the switch from shortening to elongation, rescue. Although dynamic instability is an intrinsic property of the tubulin subunits, cells use associated proteins to both speed elongation (∼ 10 fold) and regulate transitions.The only protein isolated to date capable of promoting fast polymerization consistent with rates in vivo is XMAP215, a 215 kD protein from Xenopus eggs.


Author(s):  
R.A Walker ◽  
S. Inoue ◽  
E.D. Salmon

Microtubules polymerized in vitro from tubulin purified free of microtubule-associated proteins exhibit dynamic instability (1,2,3). Free microtubule ends exist in persistent phases of elongation or rapid shortening with infrequent, but, abrupt transitions between these phases. The abrupt transition from elongation to rapid shortening is termed catastrophe and the abrupt transition from rapid shortening to elongation is termed rescue. A microtubule is an asymmetrical structure. The plus end grows faster than the minus end. The frequency of catastrophe of the plus end is somewhat greater than the minus end, while the frequency of rescue of the plus end in much lower than for the minus end (4).The mechanism of catastrophe is controversial, but for both the plus and minus microtubule ends, catastrophe is thought to be dependent on GTP hydrolysis. Microtubule elongation occurs by the association of tubulin-GTP subunits to the growing end. Sometime after incorporation into an elongating microtubule end, the GTP is hydrolyzed to GDP, yielding a core of tubulin-GDP capped by tubulin-GTP (“GTP-cap”).


2021 ◽  
Vol 22 (8) ◽  
pp. 3995
Author(s):  
Cheong-Yong Yun ◽  
Nahyun Choi ◽  
Jae Un Lee ◽  
Eun Jung Lee ◽  
Ji Young Kim ◽  
...  

Nuclear factor erythroid 2-related factor 2 (Nrf2), which is linked to autophagy regulation and melanogenesis regulation, is activated by marliolide. In this study, we investigated the effect of a marliolide derivative on melanosome degradation through the autophagy pathway. The effect of the marliolide derivative on melanosome degradation was investigated in α-melanocyte stimulating hormone (α-MSH)-treated melanocytes, melanosome-incorporated keratinocyte, and ultraviolet (UV)B-exposed HRM-2 mice (melanin-possessing hairless mice). The marliolide derivative, 5-methyl-3-tetradecylidene-dihydro-furan-2-one (DMF02), decreased melanin pigmentation by melanosome degradation in α-MSH-treated melanocytes and melanosome-incorporated keratinocytes, evidenced by premelanosome protein (PMEL) expression, but did not affect melanogenesis-associated proteins. The UVB-induced hyperpigmentation in HRM-2 mice was also reduced by a topical application of DMF02. DMF02 activated Nrf2 and induced autophagy in vivo, evidenced by decreased PMEL in microtubule-associated proteins 1A/1B light chain 3B (LC3)-II-expressed areas. DMF02 also induced melanosome degradation via autophagy in vitro, and DMF02-induced melanosome degradation was recovered by chloroquine (CQ), which is a lysosomal inhibitor. In addition, Nrf2 silencing by siRNA attenuated the DMF02-induced melanosome degradation via the suppression of p62. DMF02 induced melanosome degradation in melanocytes and keratinocytes by regulating autophagy via Nrf2-p62 activation. Therefore, Nrf2 activator could be a promising therapeutic agent for reducing hyperpigmentation.


2018 ◽  
Vol 7 (10) ◽  
pp. 321 ◽  
Author(s):  
Wei-Jun Chiu ◽  
Shian-Ren Lin ◽  
Yu-Hsin Chen ◽  
May-Jwan Tsai ◽  
Max Leong ◽  
...  

Prodigiosin (PG) belongs to a family of prodiginines isolated from gram-negative bacteria. It is a water insoluble red pigment and a potent proapoptotic compound. This study elucidates the anti-tumor activity and underlying mechanism of PG in doxorubicin-sensitive (Dox-S) and doxorubicin-resistant (Dox-R) lung cancer cells. The cytotoxicity and cell death characteristics of PG in two cells were measured by MTT assay, cell cycle analysis, and apoptosis/autophagic marker analysis. Then, the potential mechanism of PG-induced cell death was evaluated through the phosphatidylinositol-4,5-bisphosphate 3-kinase-p85/Protein kinase B /mammalian target of rapamycin (PI3K-p85/Akt/mTOR) and Beclin-1/phosphatidylinositol-4,5-bisphosphate 3-kinase-Class III (Beclin-1/PI3K-Class III) signaling. Finally, in vivo efficacy was examined by intratracheal inoculation and treatment. There was similar cytotoxicity with PG in both Dox-S and Dox-R cells, where the half maximal inhibitory concentrations (IC50) were all in 10 μM. Based on a non-significant increase in the sub-G1 phase with an increase of microtubule-associated proteins 1A/1B light chain 3B-phosphatidylethanolamine conjugate (LC3-II), the cell death of both cells was categorized to achieve autophagy. Interestingly, an increase in cleaved-poly ADP ribose polymerase (cleaved-PARP) also showed the existence of an apoptosis-sensitive subpopulation. In both Dox-S and Dox-R cells, PI3K-p85/Akt/mTOR signaling pathways were reduced, which inhibited autophagy initiation. However, Beclin-1/PI3K-Class III downregulation implicated non-canonical autophagy pathways were involved in PG-induced autophagy. At completion of the PG regimen, tumors accumulated in the mice trachea and were attenuated by PG treatment, which indicated the efficacy of PG for both Dox-S and Dox-R lung cancer. All the above results concluded that PG is a potential chemotherapeutic agent for lung cancer regimens regardless of doxorubicin resistance.


2006 ◽  
Vol 17 (8) ◽  
pp. 3557-3568 ◽  
Author(s):  
James C. Warren ◽  
Adam Rutkowski ◽  
Lynne Cassimeris

Adenovirus translocation to the nucleus occurs through a well characterized minus end-directed transport along microtubules. Here, we show that the adenovirus infection process has a significant impact on the stability and dynamic behavior of host cell microtubules. Adenovirus-infected cells had elevated levels of acetylated and detyrosinated microtubules compared with uninfected cells. The accumulation of modified microtubules within adenovirus-infected cells required active RhoA. Adenovirus-induced changes in microtubule dynamics were characterized at the centrosome and at the cell periphery in living cells. Adenovirus infection resulted in a transient enhancement of centrosomal microtubule nucleation frequency. At the periphery of adenovirus-infected cells, the dynamic instability of microtubules plus ends shifted toward net growth, compared with the nearly balanced growth and shortening observed in uninfected cells. In infected cells, microtubules spent more time in growth, less time in shortening, and underwent catastrophes less frequently compared with those in uninfected cells. Drug-induced inhibition of Rac1 prevented most of these virus-induced shifts in microtubule dynamic instability. These results demonstrate that adenovirus infection induces a significant stabilizing effect on host cell microtubule dynamics, which involve, but are not limited to, the activation of the RhoGTPases RhoA and Rac1.


2016 ◽  
Vol 213 (4) ◽  
pp. 425-433 ◽  
Author(s):  
Melissa C. Pamula ◽  
Shih-Chieh Ti ◽  
Tarun M. Kapoor

Diversity in cytoskeleton organization and function may be achieved through variations in primary sequence of tubulin isotypes. Recently, isotype functional diversity has been linked to a “tubulin code” in which the C-terminal tail, a region of substantial sequence divergence between isotypes, specifies interactions with microtubule-associated proteins. However, it is not known whether residue changes in this region alter microtubule dynamic instability. Here, we examine recombinant tubulin with human β isotype IIB and characterize polymerization dynamics. Microtubules with βIIB have catastrophe frequencies approximately threefold lower than those with isotype βIII, a suppression similar to that achieved by regulatory proteins. Further, we generate chimeric β tubulins with native tail sequences swapped between isotypes. These chimeras have catastrophe frequencies similar to that of the corresponding full-length construct with the same core sequence. Together, our data indicate that residue changes within the conserved β tubulin core are largely responsible for the observed isotype-specific changes in dynamic instability parameters and tune tubulin’s polymerization properties across a wide range.


Sign in / Sign up

Export Citation Format

Share Document