scholarly journals Promiscuous targeting of polytopic membrane proteins to SecYEG or YidC by the Escherichia coli signal recognition particle

2012 ◽  
Vol 23 (3) ◽  
pp. 464-479 ◽  
Author(s):  
Thomas Welte ◽  
Renuka Kudva ◽  
Patrick Kuhn ◽  
Lukas Sturm ◽  
David Braig ◽  
...  

Protein insertion into the bacterial inner membrane is facilitated by SecYEG or YidC. Although SecYEG most likely constitutes the major integration site, small membrane proteins have been shown to integrate via YidC. We show that YidC can also integrate multispanning membrane proteins such as mannitol permease or TatC, which had been considered to be exclusively integrated by SecYEG. Only SecA-dependent multispanning membrane proteins strictly require SecYEG for integration, which suggests that SecA can only interact with the SecYEG translocon, but not with the YidC insertase. Targeting of multispanning membrane proteins to YidC is mediated by signal recognition particle (SRP), and we show by site-directed cross-linking that the C-terminus of YidC is in contact with SRP, the SRP receptor, and ribosomal proteins. These findings indicate that SRP recognizes membrane proteins independent of the downstream integration site and that many membrane proteins can probably use either SecYEG or YidC for integration. Because protein synthesis is much slower than protein transport, the use of YidC as an additional integration site for multispanning membrane proteins may prevent a situation in which the majority of SecYEG complexes are occupied by translating ribosomes during cotranslational insertion, impeding the translocation of secretory proteins.

2000 ◽  
Vol 150 (3) ◽  
pp. 689-694 ◽  
Author(s):  
Hans-Georg Koch ◽  
Matthias Müller

Recent evidence suggests that in Escherichia coli, SecA/SecB and signal recognition particle (SRP) are constituents of two different pathways targeting secretory and inner membrane proteins to the SecYEG translocon of the plasma membrane. We now show that a secY mutation, which compromises a functional SecY–SecA interaction, does not impair the SRP-mediated integration of polytopic inner membrane proteins. Furthermore, under conditions in which the translocation of secretory proteins is strictly dependent on SecG for assisting SecA, the absence of SecG still allows polytopic membrane proteins to integrate at the wild-type level. These results indicate that SRP-dependent integration and SecA/SecB-mediated translocation do not only represent two independent protein delivery systems, but also remain mechanistically distinct processes even at the level of the membrane where they engage different domains of SecY and different components of the translocon. In addition, the experimental setup used here enabled us to demonstrate that SRP-dependent integration of a multispanning protein into membrane vesicles leads to a biologically active enzyme.


1999 ◽  
Vol 10 (7) ◽  
pp. 2163-2173 ◽  
Author(s):  
Hans-Georg Koch ◽  
Thomas Hengelage ◽  
Christoph Neumann-Haefelin ◽  
Juan MacFarlane ◽  
Hedda K. Hoffschulte ◽  
...  

The molecular requirements for the translocation of secretory proteins across, and the integration of membrane proteins into, the plasma membrane of Escherichia coli were compared. This was achieved in a novel cell-free system from E. coliwhich, by extensive subfractionation, was simultaneously rendered deficient in SecA/SecB and the signal recognition particle (SRP) components, Ffh (P48), 4.5S RNA, and FtsY. The integration of two membrane proteins into inside-out plasma membrane vesicles of E. coli required all three SRP components and could not be driven by SecA, SecB, and ΔμH+. In contrast, these were the only components required for the translocation of secretory proteins into membrane vesicles, a process in which the SRP components were completely inactive. Our results, while confirming previous in vivo studies, provide the first in vitro evidence for the dependence of the integration of polytopic inner membrane proteins on SRP in E. coli. Furthermore, they suggest that SRP and SecA/SecB have different substrate specificities resulting in two separate targeting mechanisms for membrane and secretory proteins in E. coli. Both targeting pathways intersect at the translocation pore because they are equally affected by a blocked translocation channel.


mBio ◽  
2019 ◽  
Vol 10 (4) ◽  
Author(s):  
Lara Knüpffer ◽  
Clara Fehrenbach ◽  
Kärt Denks ◽  
Veronika Erichsen ◽  
Narcis-Adrian Petriman ◽  
...  

ABSTRACT Bacteria execute a variety of protein transport systems for maintaining the proper composition of their different cellular compartments. The SecYEG translocon serves as primary transport channel and is engaged in transporting two different substrate types. Inner membrane proteins are cotranslationally inserted into the membrane after their targeting by the signal recognition particle (SRP). In contrast, secretory proteins are posttranslationally translocated by the ATPase SecA. Recent data indicate that SecA can also bind to ribosomes close to the tunnel exit. We have mapped the interaction of SecA with translating and nontranslating ribosomes and demonstrate that the N terminus and the helical linker domain of SecA bind to an acidic patch on the surface of the ribosomal protein uL23. Intriguingly, both also insert deeply into the ribosomal tunnel to contact the intratunnel loop of uL23, which serves as a nascent chain sensor. This binding pattern is remarkably similar to that of SRP and indicates an identical interaction mode of the two targeting factors with ribosomes. In the presence of a nascent chain, SecA retracts from the tunnel but maintains contact with the surface of uL23. Our data further demonstrate that ribosome and membrane binding of SecA are mutually exclusive, as both events depend on the N terminus of SecA. Our study highlights the enormous plasticity of bacterial protein transport systems and reveals that the discrimination between SRP and SecA substrates is already initiated at the ribosome. IMPORTANCE Bacterial protein transport via the conserved SecYEG translocon is generally classified as either cotranslational, i.e., when transport is coupled to translation, or posttranslational, when translation and transport are separated. We show here that the ATPase SecA, which is considered to bind its substrates posttranslationally, already scans the ribosomal tunnel for potential substrates. In the presence of a nascent chain, SecA retracts from the tunnel but maintains contact with the ribosomal surface. This is remarkably similar to the ribosome-binding mode of the signal recognition particle, which mediates cotranslational transport. Our data reveal a striking plasticity of protein transport pathways, which likely enable bacteria to efficiently recognize and transport a large number of highly different substrates within their short generation time.


2020 ◽  
Vol 203 (1) ◽  
Author(s):  
Eva Pross ◽  
Andreas Kuhn

ABSTRACT During their synthesis, the C-tailed membrane proteins expose the membrane-spanning segment late from the ribosome and consequently can insert into the membrane only posttranslationally. However, the C-tailed type 6 secretion system (T6SS) component SciP uses the bacterial signal recognition particle (SRP) system for membrane targeting, which operates cotranslationally. Analysis of possible sequence regions in the amino-terminal part of the protein revealed two candidates that were then tested for whether they function as SRP signal peptides. Both sequences were tested positive as synthetic peptides for binding to SRP. In addition, purified ribosomes with stalled nascent chains exposing either sequence were capable of binding to SRP and SRP-FtsY complexes with high affinity. Together, the data suggest that both peptides can serve as an SRP signal sequence promoting an early membrane targeting of SciP during its synthesis. Like observed for multispanning membrane proteins, the two cytoplasmic SRP signal sequences of SciP may also facilitate a retargeting event, making the targeting more efficient. IMPORTANCE C-tail proteins are anchored in the inner membrane with a transmembrane segment at the C terminus in an N-in/C-out topology. Due to this topology, membrane insertion occurs only posttranslationally. Nevertheless, the C-tail-anchored protein SciP is targeted cotranslationally by SRP. We report here that two amino-terminal hydrophobic stretches in SciP are individually recognized by SRP and target the nascent protein to FtsY. The presence of two signal sequences may enable a retargeting mechanism, as already observed for multispanning membrane proteins, to make the posttranslational insertion of SciP by YidC more efficient.


2014 ◽  
Vol 70 (a1) ◽  
pp. C1161-C1161
Author(s):  
Irmgard Sinning

More than 25% of the cellular proteome comprise membrane proteins that have to be inserted into the correct target membrane. Most membrane proteins are delivered to the membrane by the signal recognition particle (SRP) pathway which relies on the recognition of an N-terminal signal sequence. In contrast to this co-translational mechanism, which avoids problems due to the hydrophobic nature of the cargo proteins, tail-anchored (TA) membrane proteins utilize a post-translational mechanism for membrane insertion – the GET pathway (guided entry of tail-anchored membrane proteins). The SRP and GET pathways are both regulated by GTP and ATP binding proteins of the SIMIBI family. However, in the SRP pathway the SRP RNA plays a unique regulatory role. Recent insights into eukaryotic SRP will be discussed.


2005 ◽  
Vol 170 (1) ◽  
pp. 27-35 ◽  
Author(s):  
Edith N.G. Houben ◽  
Raz Zarivach ◽  
Bauke Oudega ◽  
Joen Luirink

An unbiased photo–cross-linking approach was used to probe the “molecular path” of a growing nascent Escherichia coli inner membrane protein (IMP) from the peptidyl transferase center to the surface of the ribosome. The nascent chain was initially in proximity to the ribosomal proteins L4 and L22 and subsequently contacted L23, which is indicative of progression through the ribosome via the main ribosomal tunnel. The signal recognition particle (SRP) started to interact with the nascent IMP and to target the ribosome–nascent chain complex to the Sec–YidC complex in the inner membrane when maximally half of the transmembrane domain (TM) was exposed from the ribosomal exit. The combined data suggest a flexible tunnel that may accommodate partially folded nascent proteins and parts of the SRP and SecY. Intraribosomal contacts of the nascent chain were not influenced by the presence of a functional TM in the ribosome.


2006 ◽  
Vol 189 (1) ◽  
pp. 276-279 ◽  
Author(s):  
Sophie Yurist ◽  
Idit Dahan ◽  
Jerry Eichler

ABSTRACT In vitro, archaeal SRP54 binds SRP RNA in the absence of SRP19, suggesting the latter to be expendable in Archaea. Accordingly, the Haloferax volcanii SRP19 gene was deleted. Although normally transcribed at a level comparable to that of the essential SRP54 gene, SRP19 deletion had no effect on cell growth, membrane protein insertion, protein secretion, or ribosome levels. The absence of SRP19 did, however, increase membrane bacterioruberin levels.


2002 ◽  
Vol 184 (12) ◽  
pp. 3260-3267 ◽  
Author(s):  
R. Wesley Rose ◽  
Mechthild Pohlschröder

ABSTRACT The evolutionarily conserved signal recognition particle (SRP) plays an integral role in Sec-mediated cotranslational protein translocation and membrane protein insertion, as it has been shown to target nascent secretory and membrane proteins to the bacterial and eukaryotic translocation pores. However, little is known about its function in archaea, since characterization of the SRP in this domain of life has thus far been limited to in vitro reconstitution studies of heterologously expressed archaeal SRP components identified by sequence comparisons. In the present study, the genes encoding the SRP54, SRP19, and 7S RNA homologs (hv54h, hv19h, and hv7Sh, respectively) of the genetically and biochemically tractable archaeon Haloferax volcanii were cloned, providing the tools to analyze the SRP in its native host. As part of this analysis, an hv54h knockout strain was created. In vivo characterization of this strain revealed that the archaeal SRP is required for viability, suggesting that cotranslational protein translocation is an essential process in archaea. Furthermore, a method for the purification of this SRP employing nickel chromatography was developed in H. volcanii, allowing the successful copurification of (i) Hv7Sh with a histidine-tagged Hv54h, as well as (ii) Hv54h and Hv7Sh with a histidine-tagged Hv19h. These results provide the first in vivo evidence that these components interact in archaea. Such copurification studies will provide insight into the significance of the similarities and differences of the protein-targeting systems of the three domains of life, thereby increasing knowledge about the recognition of translocated proteins in general.


Sign in / Sign up

Export Citation Format

Share Document