scholarly journals Dual effect of heat shock on DNA replication and genome integrity

2012 ◽  
Vol 23 (17) ◽  
pp. 3450-3460 ◽  
Author(s):  
Artem K. Velichko ◽  
Nadezhda V. Petrova ◽  
Omar L. Kantidze ◽  
Sergey V. Razin

Heat shock (HS) is one of the better-studied exogenous stress factors. However, little is known about its effects on DNA integrity and the DNA replication process. In this study, we show that in G1 and G2 cells, HS induces a countable number of double-stranded breaks (DSBs) in the DNA that are marked by γH2AX. In contrast, in S-phase cells, HS does not induce DSBs but instead causes an arrest or deceleration of the progression of the replication forks in a temperature-dependent manner. This response also provoked phosphorylation of H2AX, which appeared at the sites of replication. Moreover, the phosphorylation of H2AX at or close to the replication fork rescued the fork from total collapse. Collectively our data suggest that in an asynchronous cell culture, HS might affect DNA integrity both directly and via arrest of replication fork progression and that the phosphorylation of H2AX has a protective effect on the arrested replication forks in addition to its known DNA damage signaling function.

2020 ◽  
Vol 6 (38) ◽  
pp. eabc0330 ◽  
Author(s):  
D. T. Gruszka ◽  
S. Xie ◽  
H. Kimura ◽  
H. Yardimci

During replication, nucleosomes are disrupted ahead of the replication fork, followed by their reassembly on daughter strands from the pool of recycled parental and new histones. However, because no previous studies have managed to capture the moment that replication forks encounter nucleosomes, the mechanism of recycling has remained unclear. Here, through real-time single-molecule visualization of replication fork progression in Xenopus egg extracts, we determine explicitly the outcome of fork collisions with nucleosomes. Most of the parental histones are evicted from the DNA, with histone recycling, nucleosome sliding, and replication fork stalling also occurring but at lower frequencies. Critically, we find that local histone recycling becomes dominant upon depletion of endogenous histones from extracts, revealing that free histone concentration is a key modulator of parental histone dynamics at the replication fork. The mechanistic details revealed by these studies have major implications for our understanding of epigenetic inheritance.


2011 ◽  
Vol 22 (13) ◽  
pp. 2396-2408 ◽  
Author(s):  
Jessica A. Vaisica ◽  
Anastasija Baryshnikova ◽  
Michael Costanzo ◽  
Charles Boone ◽  
Grant W. Brown

Mms1 and Mms22 form a Cul4Ddb1-like E3 ubiquitin ligase with the cullin Rtt101. In this complex, Rtt101 is bound to the substrate-specific adaptor Mms22 through a linker protein, Mms1. Although the Rtt101Mms1/Mms22ubiquitin ligase is important in promoting replication through damaged templates, how it does so has yet to be determined. Here we show that mms1Δ and mms22Δ cells fail to properly regulate DNA replication fork progression when replication stress is present and are defective in recovery from replication fork stress. Consistent with a role in promoting DNA replication, we find that Mms1 is enriched at sites where replication forks have stalled and that this localization requires the known binding partners of Mms1—Rtt101 and Mms22. Mms1 and Mms22 stabilize the replisome during replication stress, as binding of the fork-pausing complex components Mrc1 and Csm3, and DNA polymerase ε, at stalled replication forks is decreased in mms1Δ and mms22Δ. Taken together, these data indicate that Mms1 and Mms22 are important for maintaining the integrity of the replisome when DNA replication forks are slowed by hydroxyurea and thereby promote efficient recovery from replication stress.


2007 ◽  
Vol 27 (8) ◽  
pp. 3131-3142 ◽  
Author(s):  
Keziban Ünsal-Kaçmaz ◽  
Paul D. Chastain ◽  
Ping-Ping Qu ◽  
Parviz Minoo ◽  
Marila Cordeiro-Stone ◽  
...  

ABSTRACT UV-induced DNA damage stalls DNA replication forks and activates the intra-S checkpoint to inhibit replicon initiation. In response to stalled replication forks, ATR phosphorylates and activates the transducer kinase Chk1 through interactions with the mediator proteins TopBP1, Claspin, and Timeless (Tim). Murine Tim recently was shown to form a complex with Tim-interacting protein (Tipin), and a similar complex was shown to exist in human cells. Knockdown of Tipin using small interfering RNA reduced the expression of Tim and reversed the intra-S checkpoint response to UVC. Tipin interacted with replication protein A (RPA) and RPA-coated DNA, and RPA promoted the loading of Tipin onto RPA-free DNA. Immunofluorescence analysis of spread DNA fibers showed that treating HeLa cells with 2.5 J/m2 UVC not only inhibited the initiation of new replicons but also reduced the rate of chain elongation at active replication forks. The depletion of Tim and Tipin reversed the UV-induced inhibition of replicon initiation but affected the rate of DNA synthesis at replication forks in different ways. In undamaged cells depleted of Tim, the apparent rate of replication fork progression was 52% of the control. In contrast, Tipin depletion had little or no effect on fork progression in unirradiated cells but significantly attenuated the UV-induced inhibition of DNA chain elongation. Together, these findings indicate that the Tim-Tipin complex mediates the UV-induced intra-S checkpoint, Tim is needed to maintain DNA replication fork movement in the absence of damage, Tipin interacts with RPA on DNA and, in UV-damaged cells, Tipin slows DNA chain elongation in active replicons.


2018 ◽  
Author(s):  
Alexander Munden ◽  
Zhan Rong ◽  
Rama Gangula ◽  
Simon Mallal ◽  
Jared T. Nordman

ABSTRACTControl of DNA copy number is essential to maintain genome stability and ensure proper cell and tissue function. In Drosophila polyploid cells, the SNF2-domain-containing SUUR protein inhibits replication fork progression within specific regions of the genome to promote DNA underreplication. While dissecting the function of SUUR’s SNF2 domain, we identified a physical interaction between SUUR and Rif1. Rif1 has many roles in DNA metabolism and regulates the replication timing program. We demonstrate that repression of DNA replication is dependent on Rif1. Rif1 localizes to active replication forks in an SUUR-dependent manner and directly regulates replication fork progression. Importantly, SUUR associates with replication forks in the absence of Rif1, indicating that Rif1 acts downstream of SUUR to inhibit fork progression. Our findings uncover an unrecognized function of the Rif1 protein as a regulator of replication fork progression.


2020 ◽  
Vol 6 (42) ◽  
pp. eabb8941 ◽  
Author(s):  
Hao Chen ◽  
Hao Chen ◽  
Jiamin Zhang ◽  
Yumin Wang ◽  
Antoine Simoneau ◽  
...  

The cyclic GMP-AMP synthase (cGAS), a sensor of cytosolic DNA, is critical for the innate immune response. Here, we show that loss of cGAS in untransformed and cancer cells results in uncontrolled DNA replication, hyperproliferation, and genomic instability. While the majority of cGAS is cytoplasmic, a fraction of cGAS associates with chromatin. cGAS interacts with replication fork proteins in a DNA binding–dependent manner, suggesting that cGAS encounters replication forks in DNA. Independent of cGAMP and STING, cGAS slows replication forks by binding to DNA in the nucleus. In the absence of cGAS, replication forks are accelerated, but fork stability is compromised. Consequently, cGAS-deficient cells are exposed to replication stress and become increasingly sensitive to radiation and chemotherapy. Thus, by acting as a decelerator of DNA replication forks, cGAS controls replication dynamics and suppresses replication-associated DNA damage, suggesting that cGAS is an attractive target for exploiting the genomic instability of cancer cells.


2016 ◽  
Vol 6 (1) ◽  
Author(s):  
Martin R. Gill ◽  
Siti Norain Harun ◽  
Swagata Halder ◽  
Ramon A. Boghozian ◽  
Kristijan Ramadan ◽  
...  

Abstract Ruthenium(II) polypyridyl complexes can intercalate DNA with high affinity and prevent cell proliferation; however, the direct impact of ruthenium-based intercalation on cellular DNA replication remains unknown. Here we show the multi-intercalator [Ru(dppz)2(PIP)]2+ (dppz = dipyridophenazine, PIP = 2-(phenyl)imidazo[4,5-f][1,10]phenanthroline) immediately stalls replication fork progression in HeLa human cervical cancer cells. In response to this replication blockade, the DNA damage response (DDR) cell signalling network is activated, with checkpoint kinase 1 (Chk1) activation indicating prolonged replication-associated DNA damage, and cell proliferation is inhibited by G1-S cell-cycle arrest. Co-incubation with a Chk1 inhibitor achieves synergistic apoptosis in cancer cells, with a significant increase in phospho(Ser139) histone H2AX (γ-H2AX) levels and foci indicating increased conversion of stalled replication forks to double-strand breaks (DSBs). Normal human epithelial cells remain unaffected by this concurrent treatment. Furthermore, pre-treatment of HeLa cells with [Ru(dppz)2(PIP)]2+ before external beam ionising radiation results in a supra-additive decrease in cell survival accompanied by increased γ-H2AX expression, indicating the compound functions as a radiosensitizer. Together, these results indicate ruthenium-based intercalation can block replication fork progression and demonstrate how these DNA-binding agents may be combined with DDR inhibitors or ionising radiation to achieve more efficient cancer cell killing.


2009 ◽  
Vol 30 (2) ◽  
pp. 423-435 ◽  
Author(s):  
Chanmi Lee ◽  
Ivan Liachko ◽  
Roxane Bouten ◽  
Zvi Kelman ◽  
Bik K. Tye

ABSTRACT Functional coordination between DNA replication helicases and DNA polymerases at replication forks, achieved through physical linkages, has been demonstrated in prokaryotes but not in eukaryotes. In Saccharomyces cerevisiae, we showed that mutations that compromise the activity of the MCM helicase enhance the physical stability of DNA polymerase α in the absence of their presumed linker, Mcm10. Mcm10 is an essential DNA replication protein implicated in the stable assembly of the replisome by virtue of its interaction with the MCM2-7 helicase and Polα. Dominant mcm2 suppressors of mcm10 mutants restore viability by restoring the stability of Polα without restoring the stability of Mcm10, in a Mec1-dependent manner. In this process, the single-stranded DNA accumulation observed in the mcm10 mutant is suppressed. The activities of key checkpoint regulators known to be important for replication fork stabilization contribute to the efficiency of suppression. These results suggest that Mcm10 plays two important roles as a linker of the MCM helicase and Polα at the elongating replication fork—first, to coordinate the activities of these two molecular motors, and second, to ensure their physical stability and the integrity of the replication fork.


2021 ◽  
Author(s):  
Sabrina X. Van Ravenstein ◽  
Kavi P. Mehta ◽  
Tamar Kavlashvili ◽  
Jo Ann Byl ◽  
Runxiang Zhao ◽  
...  

AbstractTopoisomerase II (Top2) unlinks chromosomes during vertebrate DNA replication. Top2 ‘poisons’ are widely-used chemotherapeutics that stabilize Top2 complexes on DNA, leading to cytotoxic DNA breaks. However, it is unclear how these drugs affect DNA replication, which is a major target of Top2 poisons. Using Xenopus egg extracts, we show that the Top2 poisons etoposide and doxorubicin both inhibit DNA replication through different mechanisms. Etoposide induces Top2-dependent DNA breaks and induces Top2-dependent fork stalling by trapping Top2 behind replication forks. In contrast, doxorubicin does not lead to appreciable break formation and instead intercalates into parental DNA to inhibit replication fork progression. In human cells, etoposide stalls replication forks in a Top2-dependent manner, while doxorubicin stalls forks independently of Top2. However, both drugs exhibit Top2-dependent cytotoxicity. Thus, despite shared genetic requirements for cytotoxicity etoposide and doxorubicin inhibit DNA replication through distinct mechanisms.


Sign in / Sign up

Export Citation Format

Share Document