scholarly journals Spatial telomere organization and clustering in yeast Saccharomyces cerevisiae nucleus is generated by a random dynamics of aggregation–dissociation

2013 ◽  
Vol 24 (11) ◽  
pp. 1791-1800 ◽  
Author(s):  
Nathanaël Hozé ◽  
Myriam Ruault ◽  
Carlo Amoruso ◽  
Angela Taddei ◽  
David Holcman

Spatial and temporal behavior of chromosomes and their regulatory proteins is a key control mechanism in genomic function. This is exemplified by the clustering of the 32 budding yeast telomeres that form foci in which silencing factors concentrate. To uncover the determinants of telomere distribution, we compare live-cell imaging with a stochastic model of telomere dynamics that we developed. We show that random encounters alone are inadequate to produce the clustering observed in vivo. In contrast, telomere dynamics observed in vivo in both haploid and diploid cells follows a process of dissociation–aggregation. We determine the time that two telomeres spend in the same cluster for the telomere distribution observed in cells expressing different levels of the silencing factor Sir3 protein, limiting for telomere clustering. We conclude that telomere clusters, their dynamics, and their nuclear distribution result from random motion, aggregation, and dissociation of telomeric regions, specifically determined by the amount of Sir3.

2004 ◽  
Vol 15 (12) ◽  
pp. 5616-5622 ◽  
Author(s):  
Martin Andresen ◽  
Rita Schmitz-Salue ◽  
Stefan Jakobs

Genetically encoded tags are of fundamental importance for live cell imaging. We show that small tetracysteine (TetCys) tags can be highly advantageous for the functionality of the host protein compared with large fluorescent protein tags. One to three concatenated small TetCys tags as well as the large green fluorescent protein (GFP) were fused by integrative epitope tagging to the C terminus of β-tubulin (Tub2) in the budding yeast Saccharomyces cerevisiae. The increasing tag size correlated with functional interference to the host protein. Tub2 tagged with either 1×TetCys (10 amino acids [aa]) or 2×TetCys (20 aa) was able to substitute Tub2 in haploid cells. In contrast, C-terminal tagging of Tub2 with 3×TetCys (29 aa) or with GFP (244 aa) resulted in nonviable haploid cells. Cells expressing Tub2-1×TetCys or Tub2-2×TetCys were stained with FlAsH, which selectively binds to the TetCys-tag. The stained cells displayed dynamic FlAsH-labeled microtubules and low cellular background fluorescence. The presented approach to tag open reading frames (ORFs) at their native loci with very small TetCys-tags and the subsequent visualization of the tagged proteins in vivo can be extended in principle to any ORF in S. cerevisiae.


Science ◽  
2012 ◽  
Vol 336 (6089) ◽  
pp. 1676-1681 ◽  
Author(s):  
Ronald N. Germain ◽  
Ellen A. Robey ◽  
Michael D. Cahalan

To mount an immune response, lymphocytes must recirculate between the blood and lymph nodes, recognize antigens upon contact with specialized presenting cells, proliferate to expand a small number of clonally relevant lymphocytes, differentiate to antibody-producing plasma cells or effector T cells, exit from lymph nodes, migrate to tissues, and engage in host-protective activities. All of these processes involve motility and cellular interactions—events that were hidden from view until recently. Introduced to immunology by three papers in this journal in 2002, in vivo live-cell imaging studies are revealing the behavior of cells mediating adaptive and innate immunity in diverse tissue environments, providing quantitative measurement of cellular motility, interactions, and response dynamics. Here, we review themes emerging from such studies and speculate on the future of immunoimaging.


2015 ◽  
Vol 44 (12) ◽  
pp. 5763-5770 ◽  
Author(s):  
Shyamaprosad Goswami ◽  
Krishnendu Aich ◽  
Sangita Das ◽  
Chitrangada Das Mukhopadhyay ◽  
Deblina Sarkar ◽  
...  

A new quinoline based sensor was developed and applied for the selective detection of Cd2+ both in vitro and in vivo.


2020 ◽  
Vol 343 ◽  
pp. 108808 ◽  
Author(s):  
Margarita Arango-Lievano ◽  
Yann Dromard ◽  
Pierre Fontanaud ◽  
Chrystel Lafont ◽  
Patrice Mollard ◽  
...  

2019 ◽  
Vol 55 (33) ◽  
pp. 4841-4844 ◽  
Author(s):  
Guilin Chen ◽  
Zaicai Zhou ◽  
Hui Feng ◽  
Chenyan Zhang ◽  
Yifan Wang ◽  
...  

A molecular probe with aggregation-induced phosphorescence (AIP) properties for calcium ion-specific detection and imaging in vivo was designed.


PLoS ONE ◽  
2013 ◽  
Vol 8 (5) ◽  
pp. e62195 ◽  
Author(s):  
Oriol Gallego ◽  
Tanja Specht ◽  
Thorsten Brach ◽  
Arun Kumar ◽  
Anne-Claude Gavin ◽  
...  

PLoS ONE ◽  
2015 ◽  
Vol 10 (6) ◽  
pp. e0128332 ◽  
Author(s):  
Yoshikazu Ohno ◽  
Joji M. Otaki

2018 ◽  
Author(s):  
Livia V. Bayer ◽  
Omar S. Omar ◽  
Diana P. Bratu ◽  
Irina E. Catrina

ABSTRACTMolecular beacons are nucleic acid oligomers labeled with a fluorophore and a quencher that fold in a hairpin-shaped structure, which fluoresce only when bound to their target RNA. They are used for the visualization of endogenous mRNAs in live cells. Here, we report a Python program (PinMol) that designs molecular beacons best suited for live cell imaging by using structural information from secondary structures of the target RNA, predicted via energy minimization approaches. PinMol takes into account the accessibility of the targeted regions, as well as the inter- and intramolecular interactions of each selected probe. To demonstrate its applicability, we synthesized an oskar mRNA-specific molecular beacon (osk1236), which is selected by PinMol to target a more accessible region than a manually designed oskar-specific molecular beacon (osk2216). We previously demonstrated osk2216 to be efficient in detecting oskar mRNA in in vivo experiments. Here, we show that osk1236 outperformed osk2216 in live cell imaging experiments.


Sign in / Sign up

Export Citation Format

Share Document