scholarly journals Condensin suppresses recombination and regulates double-strand break processing at the repetitive ribosomal DNA array to ensure proper chromosome segregation during meiosis in budding yeast

2014 ◽  
Vol 25 (19) ◽  
pp. 2934-2947 ◽  
Author(s):  
Ping Li ◽  
Hui Jin ◽  
Hong-Guo Yu

During meiosis, homologues are linked by crossover, which is required for bipolar chromosome orientation before chromosome segregation at anaphase I. The repetitive ribosomal DNA (rDNA) array, however, undergoes little or no meiotic recombination. Hyperrecombination can cause chromosome missegregation and rDNA copy number instability. We report here that condensin, a conserved protein complex required for chromosome organization, regulates double-strand break (DSB) formation and repair at the rDNA gene cluster during meiosis in budding yeast. Condensin is highly enriched at the rDNA region during prophase I, released at the prophase I/metaphase I transition, and reassociates with rDNA before anaphase I onset. We show that condensin plays a dual role in maintaining rDNA stability: it suppresses the formation of Spo11-mediated rDNA breaks, and it promotes DSB processing to ensure proper chromosome segregation. Condensin is unnecessary for the export of rDNA breaks outside the nucleolus but required for timely repair of meiotic DSBs. Our work reveals that condensin coordinates meiotic recombination with chromosome segregation at the repetitive rDNA sequence, thereby maintaining genome integrity.

2019 ◽  
Author(s):  
Paula Alonso-Ramos ◽  
David Álvarez-Melo ◽  
Katerina Strouhalova ◽  
Carolina Pascual-Silva ◽  
George B. Garside ◽  
...  

AbstractMeiotic defects derived from incorrect DNA repair during gametogenesis can lead to mutations, aneuploidies and infertility. Effective and coordinated resolution of meiotic recombination intermediates is necessary to accomplish both rounds of successful chromosome segregation. Cdc14 is an evolutionarily conserved dual-specificity phosphatase required for mitotic exit and meiotic progression. Mutations that inactivate the phosphatase lead to meiotic failure. Here, we have identified previously undescribed roles of Cdc14 in ensuring correct meiotic recombination. We found that recombination intermediates accumulate during prophase I when Cdc14 is depleted. Furthermore, Cdc14 plays a role in correct homolog disjunction at the end of anaphase I, both by modulating the timely removal of arm-cohesion between sister chromatids and by promoting elimination of SPO11-dependent entanglements. We also demonstrate that Cdc14 is required for correct sister chromatid segregation during the second meiotic division, independent of centromeric cohesion but dependent on the correct reduplication of SPBs during meiosis II, and on the activity of the Holliday Junction resolvase Yen1/GEN1. Timely activation of Yen1/GEN1 in anaphase I and II is impaired in the meiosis defective allele, cdc143HA. Based on these new findings, we propose previously undescribed functions of Cdc14 in the regulation of meiotic recombination; roles that are independent of sister chromatid cohesion, spindle dynamics and the metabolism of gamete morphogenesis.Author SummaryMeiotic recombination is fundamental for sexual reproduction, with efficient and orchestrated resolution of recombination intermediates critical for correct chromosome segregation. Homologous recombination is initiated by the introduction of programmed DNA Double-Strand Breakds (DSBs) followed by the formation of complex branched DNA intermediates, including double Holliday Junctions (dHJs). These recombination intermediates are eventually repaired into crossover or non-crossover products. In some cases, unresolved recombination intermediates, or toxic repair products, might persist until the metaphase to anaphase transition, requiring a set of late-acting repair enzymes to process them. Unrestrained activity of these enzymes, however, is equally detrimental for genome integrity, thus several layers of regulation tightly control them. For example, in budding yeast meiosis, Yen1/GEN1 is mainly activated during the second meiotic division, although how it is activated is unknown. Here, we have identified that the phosphatase Cdc14 is required during meiotic divisions for timely nuclear localization and activation of Yen1 in budding yeast meiosis. Additionally, we have been able to identify previously undescribed roles of Cdc14 in controlling meiotic recombination. Strikingly, we found that levels of recombination intermediates increase during prophase I in cdc14 meiotic deficient cells, indicating that Cdc14 plays a direct role in monitoring meiotic DSB repair, possibly in Yen1-independent manner. Resolution of recombination intermediates in the absence of Cdc14 is dependent on SGS1 and MUS81/MMS4, otherwise accumulating different types of aberrant recombination intermediates and a highly reduced efficiency in CO formation. Deficient resolution of JMs in cdc14 meiotic cells, together with difficulties in SPB reduplication, likely contribute to the missegregation problems observed during the second meiotic division.


Genetics ◽  
1996 ◽  
Vol 144 (1) ◽  
pp. 27-41 ◽  
Author(s):  
Larry A Gilbertson ◽  
Franklin W Stahl

Abstract We tested predictions of the double-strand break repair (DSBR) model for meiotic recombination by examining the segregation patterns of small palindromic insertions, which frequently escape mismatch repair when in heteroduplex DNA. The palindromes flanked a well characterized DSB site at the ARC4 locus. The “canonical” DSBR model, in which only 5′ ends are degraded and resolution of the four-stranded intermediate is by Holliday junction resolvase, predicts that hDNA will frequently occur on both participating chromatids in a single event. Tetrads reflecting this configuration of hDNA were rare. In addition, a class of tetrads not predicted by the canonical DSBR model was identified. This class represented events that produced hDNA in a “trans” configuration, on opposite strands of the same duplex on the two sides of the DSB site. Whereas most classes of convertant tetrads had typical frequencies of associated crossovers, tetrads with trans hDNA were parental for flanking markers. Modified versions of the DSBR model, including one that uses a topoisomerase to resolve the canonical DSBR intermediate, are supported by these data.


2005 ◽  
Vol 86 (3) ◽  
pp. 185-191 ◽  
Author(s):  
PETTER PORTIN

The effect was investigated of the hypomorphic DNA double-strand break repair, notably synthesis-dependent strand annealing, deficient mutation mus309 on the third chromosome of Drosophila melanogaster on intergenic and intragenic meiotic recombination in the X chromosome. The results showed that the mutation significantly increases the frequency of intergenic crossing over in two of three gene intervals of the X chromosome studied. Interestingly the increase was most prevalent in the tip of the X chromosome where crossovers normally are least frequent per physical map unit length. In particular crossing over interference was also affected, indicating that the effect of the mus309 mutation involves preconditions of crossing over but not the event of crossing over itself. On the other hand, the results also show that most probably the mutation does not have any effect on intragenic recombination, i.e. gene conversion. These results are fully consistent with the present molecular models of meiotic crossing over initiated by double-strand breaks of DNA followed by formation of a single-end-invasion intermediate, or D-loop, which is subsequently processed to generate either crossover or non-crossover products involving formation of a double Holliday junction. In particular the results suggest that the mus309 gene is involved in resolution of the D-loop, thereby affecting the choice between double-strand-break repair (DSBR) and synthesis-dependent strand annealing (SDSA) pathways of meiotic recombination.


PLoS ONE ◽  
2017 ◽  
Vol 12 (7) ◽  
pp. e0180994 ◽  
Author(s):  
Ruoxi W. Wang ◽  
Cheng-Sheng Lee ◽  
James E. Haber

Genetics ◽  
1991 ◽  
Vol 129 (4) ◽  
pp. 1033-1042
Author(s):  
A J Klar ◽  
M J Bonaduce

Abstract Mitotic interconversion of the mating-type locus (mat1) of the fission yeast Schizosaccharomyces pombe is initiated by a double-strand break at mat1. The mat2 and mat3 loci act as nonrandom donors of genetic information for mat1 switching such that switches occur primarily (or only) to the opposite mat1 allele. Location of the mat1 "hot spot" for transposition should be contrasted with the "cold spot" of meiotic recombination located within the adjoining mat2-mat3 interval. That is, meiotic interchromosomal recombination in mat2, mat3 and the intervening 15-kilobase region does not occur at all. swi2 and swi6 switching-deficient mutants possess the normal level of double-strand break at mat1, yet they fail to switch efficiently. By testing for meiotic recombination in the cold spot, we found the usual lack of recombination in a swi2 mutant but a significant level of recombination in a swi6 mutant. Therefore, the swi6 gene function is required to keep the donor loci inert for interchromosomal recombination. This finding, combined with the additional result that switching primarily occurs intrachromosomally, suggests that the donor loci are made accessible for switching by folding them onto mat1, thus causing the cold spot of recombination.


Genetics ◽  
2003 ◽  
Vol 165 (1) ◽  
pp. 101-114 ◽  
Author(s):  
Stuart J Haring ◽  
George R Halley ◽  
Alex J Jones ◽  
Robert E Malone

Abstract This study addresses three questions about the properties of recombination hotspots in Saccharomyces cerevisiae: How much DNA is required for double-strand-break (DSB) site recognition? Do naturally occurring DSB sites compete with each other in meiotic recombination? What role does the sequence located at the sites of DSBs play? In S. cerevisiae, the HIS2 meiotic recombination hotspot displays a high level of gene conversion, a 3′-to-5′ conversion gradient, and two DSB sites located ∼550 bp apart. Previous studies of hotspots, including HIS2, suggest that global chromosome structure plays a significant role in recombination activity, raising the question of how much DNA is sufficient for hotspot activity. We find that 11.5 kbp of the HIS2 region is sufficient to partially restore gene conversion and both DSBs when moved to another yeast chromosome. Using a variety of different constructs, studies of hotspots have indicated that DSB sites compete with one another for DSB formation. The two naturally occurring DSBs at HIS2 afforded us the opportunity to examine whether or not competition occurs between these native DSB sites. Small deletions of DNA at each DSB site affect only that site; analyses of these deletions show no competition occurring in cis or in trans, indicating that DSB formation at each site at HIS2 is independent. These small deletions significantly affect the frequency of DSB formation at the sites, indicating that the DNA sequence located at a DSB site can play an important role in recombination initiation.


Sign in / Sign up

Export Citation Format

Share Document