scholarly journals The intraflagellar transport dynein complex of trypanosomes is made of a heterodimer of dynein heavy chains and of light and intermediate chains of distinct functions

2014 ◽  
Vol 25 (17) ◽  
pp. 2620-2633 ◽  
Author(s):  
Thierry Blisnick ◽  
Johanna Buisson ◽  
Sabrina Absalon ◽  
Alexandra Marie ◽  
Nadège Cayet ◽  
...  

Cilia and flagella are assembled by intraflagellar transport (IFT) of protein complexes that bring tubulin and other precursors to the incorporation site at their distal tip. Anterograde transport is driven by kinesin, whereas retrograde transport is ensured by a specific dynein. In the protist Trypanosoma brucei, two distinct genes encode fairly different dynein heavy chains (DHCs; ∼40% identity) termed DHC2.1 and DHC2.2, which form a heterodimer and are both essential for retrograde IFT. The stability of each heavy chain relies on the presence of a dynein light intermediate chain (DLI1; also known as XBX-1/D1bLIC). The presence of both heavy chains and of DLI1 at the base of the flagellum depends on the intermediate dynein chain DIC5 (FAP133/WDR34). In the IFT140RNAi mutant, an IFT-A protein essential for retrograde transport, the IFT dynein components are found at high concentration at the flagellar base but fail to penetrate the flagellar compartment. We propose a model by which the IFT dynein particle is assembled in the cytoplasm, reaches the base of the flagellum, and associates with the IFT machinery in a manner dependent on the IFT-A complex.

eLife ◽  
2014 ◽  
Vol 3 ◽  
Author(s):  
Diego Huet ◽  
Thierry Blisnick ◽  
Sylvie Perrot ◽  
Philippe Bastin

The construction of cilia and flagella depends on intraflagellar transport (IFT), the bidirectional movement of two protein complexes (IFT-A and IFT-B) driven by specific kinesin and dynein motors. IFT-B and kinesin are associated to anterograde transport whereas IFT-A and dynein participate to retrograde transport. Surprisingly, the small GTPase IFT27, a member of the IFT-B complex, turns out to be essential for retrograde cargo transport in Trypanosoma brucei. We reveal that this is due to failure to import both the IFT-A complex and the IFT dynein into the flagellar compartment. To get further molecular insight about the role of IFT27, GDP- or GTP-locked versions were expressed in presence or absence of endogenous IFT27. The GDP-locked version is unable to enter the flagellum and to interact with other IFT-B proteins and its sole expression prevents flagellum formation. These findings demonstrate that a GTPase-competent IFT27 is required for association to the IFT complex and that IFT27 plays a role in the cargo loading of the retrograde transport machinery.


2008 ◽  
Vol 19 (3) ◽  
pp. 929-944 ◽  
Author(s):  
Sabrina Absalon ◽  
Thierry Blisnick ◽  
Linda Kohl ◽  
Géraldine Toutirais ◽  
Gwénola Doré ◽  
...  

Intraflagellar transport (IFT) is the bidirectional movement of protein complexes required for cilia and flagella formation. We investigated IFT by analyzing nine conventional IFT genes and five novel putative IFT genes (PIFT) in Trypanosoma brucei that maintain its existing flagellum while assembling a new flagellum. Immunostaining against IFT172 or expression of tagged IFT20 or green fluorescent protein GFP::IFT52 revealed the presence of IFT proteins along the axoneme and at the basal body and probasal body regions of both old and new flagella. IFT particles were detected by electron microscopy and exhibited a strict localization to axonemal microtubules 3–4 and 7–8, suggesting the existence of specific IFT tracks. Rapid (>3 μm/s) bidirectional intraflagellar movement of GFP::IFT52 was observed in old and new flagella. RNA interference silencing demonstrated that all individual IFT and PIFT genes are essential for new flagellum construction but the old flagellum remained present. Inhibition of IFTB proteins completely blocked axoneme construction. Absence of IFTA proteins (IFT122 and IFT140) led to formation of short flagella filled with IFT172, indicative of defects in retrograde transport. Two PIFT proteins turned out to be required for retrograde transport and three for anterograde transport. Finally, flagellum membrane elongation continues despite the absence of axonemal microtubules in all IFT/PIFT mutant.


eLife ◽  
2017 ◽  
Vol 6 ◽  
Author(s):  
Alexander Chien ◽  
Sheng Min Shih ◽  
Raqual Bower ◽  
Douglas Tritschler ◽  
Mary E Porter ◽  
...  

Intraflagellar transport (IFT) is essential for the elongation and maintenance of eukaryotic cilia and flagella. Due to the traffic jam of multiple trains at the ciliary tip, how IFT trains are remodeled in these turnaround zones cannot be determined by conventional imaging. Using PhotoGate, we visualized the full range of movement of single IFT trains and motors in Chlamydomonas flagella. Anterograde trains split apart and IFT complexes mix with each other at the tip to assemble retrograde trains. Dynein-1b is carried to the tip by kinesin-II as inactive cargo on anterograde trains. Unlike dynein-1b, kinesin-II detaches from IFT trains at the tip and diffuses in flagella. As the flagellum grows longer, diffusion delays return of kinesin-II to the basal body, depleting kinesin-II available for anterograde transport. Our results suggest that dissociation of kinesin-II from IFT trains serves as a negative feedback mechanism that facilitates flagellar length control in Chlamydomonas.


2008 ◽  
Vol 19 (4) ◽  
pp. 1450-1461 ◽  
Author(s):  
Che-Chia Tsao ◽  
Martin A. Gorovsky

Intraflagellar transport (IFT) particles are multiprotein complexes that move bidirectionally along the cilium/flagellum. The Tetrahymena IFT172 gene encodes a protein with an N-terminal WD domain (WDD) and a C-terminal repeat domain (RPD). Epitope-tagged Ift172p localized to the basal body and in cilia along the axoneme, and IFT172 knockout cells lost cilia and motility. Using serial deletion constructs to rescue the knockout cells, we found that neither the WDD nor the RPD alone is sufficient to assemble cilia. Ift172p containing only the WDD or the RPD failed to enter cilia. Constructs with a partial truncation of the RPD still rescued although cilia were assembled less efficiently, indicating that the WDD and a part of the RPD are sufficient for anterograde transport. Partial truncation of the RPD caused the accumulation of truncated Ift172p itself and of Ift88p at ciliary tips, suggesting that IFT turnaround or retrograde transport was affected. These results implicate different regions of Ift172p in different steps of the IFT process.


2018 ◽  
Author(s):  
Eloïse Bertiaux ◽  
Adeline Mallet ◽  
Cécile Fort ◽  
Thierry Blisnick ◽  
Serge Bonnefoy ◽  
...  

SummaryIntraflagellar transport (IFT) is the rapid bidirectional movement of large protein complexes driven by kinesin and dynein motors along microtubule doublets of cilia and flagella. Here we used a combination of high-resolution electron and light microscopy to investigate how and where these IFT trains move within the flagellum of the protist Trypanosoma brucei. Focused Ion Beam Scanning Electron Microscopy (FIB-SEM) analysis of trypanosomes showed that trains are found almost exclusively along two sets of doublets (3-4 and 7-8) and distribute in two categories according to their length. High-resolution live imaging of cells expressing mNeonGreen::IFT81 or GFP::IFT52 revealed for the first time IFT trafficking on two parallel lines within the flagellum. Anterograde and retrograde IFT occur on each of these lines. At the distal end, a large individual anterograde IFT train is converted in several smaller retrograde trains in the space of 3-4 seconds while remaining on the same side of the axoneme.


2012 ◽  
Vol 23 (5) ◽  
pp. 751-753 ◽  
Author(s):  
Keith G. Kozminski

Intraflagellar transport is the rapid, bidirectional movement of protein complexes along the length of most eukaryotic cilia and flagella. Discovery of this intracellular process in Chlamydomonas reinhardtii 20 years ago led to a rapid discovery of cellular mechanisms that underlie a large number of human ciliopathies. Described herein are the events that led to this discovery.


2006 ◽  
Vol 17 (12) ◽  
pp. 5053-5062 ◽  
Author(s):  
Oliver E. Blacque ◽  
Chunmei Li ◽  
Peter N. Inglis ◽  
Muneer A. Esmail ◽  
Guangshuo Ou ◽  
...  

The assembly and maintenance of cilia require intraflagellar transport (IFT), a microtubule-dependent bidirectional motility of multisubunit protein complexes along ciliary axonemes. Defects in IFT and the functions of motile or sensory cilia are associated with numerous human ailments, including polycystic kidney disease and Bardet–Biedl syndrome. Here, we identify a novel Caenorhabditis elegans IFT gene, IFT-associated gene 1 (ifta-1), which encodes a WD repeat-containing protein with strong homology to a mammalian protein of unknown function. Both the C. elegans and human IFTA-1 proteins localize to the base of cilia, and in C. elegans, IFTA-1 can be observed to undergo IFT. IFTA-1 is required for the function and assembly of cilia, because a C. elegans ifta-1 mutant displays chemosensory abnormalities and shortened cilia with prominent ciliary accumulations of core IFT machinery components that are indicative of retrograde transport defects. Analyses of C. elegans IFTA-1 localization/motility along bbs mutant cilia, where anterograde IFT assemblies are destabilized, and in a che-11 IFT gene mutant, demonstrate that IFTA-1 is closely associated with the IFT particle A subcomplex, which is implicated in retrograde IFT. Together, our data indicate that IFTA-1 is a novel IFT protein that is required for retrograde transport along ciliary axonemes.


2019 ◽  
Author(s):  
Wei Wang ◽  
Bailey A. Allard ◽  
Tana S. Pottorf ◽  
Jay L. Vivian ◽  
Pamela V. Tran

AbstractPrimary cilia are sensory organelles that are essential for eukaryotic development and health. These antenna-like structures are synthesized by intraflagellar transport protein complexes, IFT-B and IFT-A, which mediate bi-directional protein trafficking along the ciliary axoneme. Here using mouse embryonic fibroblasts (MEF), we investigate the ciliary roles of two mammalian orthologues of Chlamydomonas IFT-A gene, IFT139, namely Thm1 (also known as Ttc21b) and Thm2 (Ttc21a). Thm1 loss causes perinatal lethality, and Thm2 loss allows survival into adulthood. At E14.5, the number of Thm1;Thm2 double mutant embryos is lower than that for a Mendelian ratio, indicating deletion of Thm1 and Thm2 causes mid-gestational lethality. We examined the ciliary phenotypes of mutant MEF. Thm1-mutant MEF show decreased cilia assembly, shortened primary cilia, a retrograde IFT defect for IFT and BBS proteins, and reduced ciliary entry of membrane-associated proteins. Thm1-mutant cilia also show a retrograde transport defect for the Hedgehog transducer, Smoothened, and an impaired response to Smoothened agonist, SAG. Thm2-null MEF show normal ciliary dynamics and Hedgehog signaling, but additional loss of a Thm1 allele impairs response to SAG. Further, Thm1;Thm2 double mutant MEF show enhanced cilia disassembly, and relative to Thm1-null MEF, increased impairment of IFT81 retrograde transport and of INPP5E ciliary import. Thus, Thm1 and Thm2 have unique and redundant roles in MEF. Thm1 regulates cilia assembly, and together with Thm2, cilia disassembly. Moreover, Thm1 alone and together with Thm2, regulates ciliary protein trafficking, Hedgehog signaling, and embryogenesis. These findings shed light on mechanisms underlying Thm1-, Thm2- or IFT-A-mediated ciliopathies.


2016 ◽  
Vol 27 (15) ◽  
pp. 2404-2422 ◽  
Author(s):  
Jaimee Reck ◽  
Alexandria M. Schauer ◽  
Kristyn VanderWaal Mills ◽  
Raqual Bower ◽  
Douglas Tritschler ◽  
...  

The assembly of cilia and flagella depends on the activity of two microtubule motor complexes, kinesin-2 and dynein-2/1b, but the specific functions of the different subunits are poorly defined. Here we analyze Chlamydomonas strains expressing different amounts of the dynein 1b light intermediate chain (D1bLIC). Disruption of D1bLIC alters the stability of the dynein 1b complex and reduces both the frequency and velocity of retrograde intraflagellar transport (IFT), but it does not eliminate retrograde IFT. Flagellar assembly, motility, gliding, and mating are altered in a dose-dependent manner. iTRAQ-based proteomics identifies a small subset of proteins that are significantly reduced or elevated in d1blic flagella. Transformation with D1bLIC-GFP rescues the mutant phenotypes, and D1bLIC-GFP assembles into the dynein 1b complex at wild-type levels. D1bLIC-GFP is transported with anterograde IFT particles to the flagellar tip, dissociates into smaller particles, and begins processive retrograde IFT in <2 s. These studies demonstrate the role of D1bLIC in facilitating the recycling of IFT subunits and other proteins, identify new components potentially involved in the regulation of IFT, flagellar assembly, and flagellar signaling, and provide insight into the role of D1bLIC and retrograde IFT in other organisms.


2018 ◽  
Author(s):  
Diego Huet ◽  
Thierry Blisnick ◽  
Sylvie Perrot ◽  
Philippe Bastin

AbstractIntraflagellar transport (IFT), the movement of protein complexes responsible for the assembly of cilia and flagella, is remarkably well conserved from protists to humans. However, two IFT components (IFT25 and IFT27) are missing from multiple unrelated eukaryotic species. In mouse, IFT25 and IFT27 are not required for assembly of several cilia with the noticeable exception of the flagellum of spermatozoa. Here we show that the Trypanosoma brucei IFT25 protein is a proper component of the IFT-B complex and displays typical IFT trafficking. Using bimolecular fluorescence complementation assays, we reveal that IFT25 and IFT27 interact within the flagellum in live cells during the IFT transport process. IFT25-depleted cells construct tiny disorganised flagella that accumulate IFT-B proteins (with the exception of IFT27, the binding partner of IFT25) but not IFT-A proteins. This phenotype is comparable to the one following depletion of IFT27 and shows that IFT25/IFT27 constitute a specific module requested for proper IFT and flagellum construction in trypanosomes. We discuss the possible reasons why IFT25/IFT27 would be required for only some types of cilia.


Sign in / Sign up

Export Citation Format

Share Document