scholarly journals The WD Repeat-containing Protein IFTA-1 Is Required for Retrograde Intraflagellar Transport

2006 ◽  
Vol 17 (12) ◽  
pp. 5053-5062 ◽  
Author(s):  
Oliver E. Blacque ◽  
Chunmei Li ◽  
Peter N. Inglis ◽  
Muneer A. Esmail ◽  
Guangshuo Ou ◽  
...  

The assembly and maintenance of cilia require intraflagellar transport (IFT), a microtubule-dependent bidirectional motility of multisubunit protein complexes along ciliary axonemes. Defects in IFT and the functions of motile or sensory cilia are associated with numerous human ailments, including polycystic kidney disease and Bardet–Biedl syndrome. Here, we identify a novel Caenorhabditis elegans IFT gene, IFT-associated gene 1 (ifta-1), which encodes a WD repeat-containing protein with strong homology to a mammalian protein of unknown function. Both the C. elegans and human IFTA-1 proteins localize to the base of cilia, and in C. elegans, IFTA-1 can be observed to undergo IFT. IFTA-1 is required for the function and assembly of cilia, because a C. elegans ifta-1 mutant displays chemosensory abnormalities and shortened cilia with prominent ciliary accumulations of core IFT machinery components that are indicative of retrograde transport defects. Analyses of C. elegans IFTA-1 localization/motility along bbs mutant cilia, where anterograde IFT assemblies are destabilized, and in a che-11 IFT gene mutant, demonstrate that IFTA-1 is closely associated with the IFT particle A subcomplex, which is implicated in retrograde IFT. Together, our data indicate that IFTA-1 is a novel IFT protein that is required for retrograde transport along ciliary axonemes.

2004 ◽  
Vol 32 (5) ◽  
pp. 682-684 ◽  
Author(s):  
J.M. Scholey ◽  
G. Ou ◽  
J. Snow ◽  
A. Gunnarson

IFT (intraflagellar transport) assembles and maintains sensory cilia on the dendritic endings of chemosensory neurons within the nematode Caenorhabditis elegans. During IFT, macromolecular protein complexes called IFT particles (which carry ciliary precursors) are moved from the base of the sensory cilium to its distal tip by anterograde IFT motors (kinesin-II and Osm-3 kinesin) and back to the base by retrograde IFT-dynein [Rosenbaum and Witman (2002) Nat. Rev. Mol. Cell Biol. 3, 813–825; Scholey (2003) Annu. Rev. Cell Dev. Biol. 19, 423–443; and Snell, Pan and Wang (2004) Cell 117, 693–697]. In the present study, we describe the protein machinery of IFT in C. elegans, which we have analysed using time-lapse fluorescence microscopy of green fluorescent protein-fusion proteins in concert with ciliary mutants.


2014 ◽  
Vol 25 (17) ◽  
pp. 2620-2633 ◽  
Author(s):  
Thierry Blisnick ◽  
Johanna Buisson ◽  
Sabrina Absalon ◽  
Alexandra Marie ◽  
Nadège Cayet ◽  
...  

Cilia and flagella are assembled by intraflagellar transport (IFT) of protein complexes that bring tubulin and other precursors to the incorporation site at their distal tip. Anterograde transport is driven by kinesin, whereas retrograde transport is ensured by a specific dynein. In the protist Trypanosoma brucei, two distinct genes encode fairly different dynein heavy chains (DHCs; ∼40% identity) termed DHC2.1 and DHC2.2, which form a heterodimer and are both essential for retrograde IFT. The stability of each heavy chain relies on the presence of a dynein light intermediate chain (DLI1; also known as XBX-1/D1bLIC). The presence of both heavy chains and of DLI1 at the base of the flagellum depends on the intermediate dynein chain DIC5 (FAP133/WDR34). In the IFT140RNAi mutant, an IFT-A protein essential for retrograde transport, the IFT dynein components are found at high concentration at the flagellar base but fail to penetrate the flagellar compartment. We propose a model by which the IFT dynein particle is assembled in the cytoplasm, reaches the base of the flagellum, and associates with the IFT machinery in a manner dependent on the IFT-A complex.


2006 ◽  
Vol 17 (11) ◽  
pp. 4801-4811 ◽  
Author(s):  
Evgeni Efimenko ◽  
Oliver E. Blacque ◽  
Guangshuo Ou ◽  
Courtney J. Haycraft ◽  
Bradley K. Yoder ◽  
...  

The intraflagellar transport (IFT) machinery required to build functional cilia consists of a multisubunit complex whose molecular composition, organization, and function are poorly understood. Here, we describe a novel tryptophan-aspartic acid (WD) repeat (WDR) containing IFT protein from Caenorhabditis elegans, DYF-2, that plays a critical role in maintaining the structural and functional integrity of the IFT machinery. We determined the identity of the dyf-2 gene by transgenic rescue of mutant phenotypes and by sequencing of mutant alleles. Loss of DYF-2 function selectively affects the assembly and motility of different IFT components and leads to defects in cilia structure and chemosensation in the nematode. Based on these observations, and the analysis of DYF-2 movement in a Bardet–Biedl syndrome mutant with partially disrupted IFT particles, we conclude that DYF-2 can associate with IFT particle complex B. At the same time, mutations in dyf-2 can interfere with the function of complex A components, suggesting an important role of this protein in the assembly of the IFT particle as a whole. Importantly, the mouse orthologue of DYF-2, WDR19, also localizes to cilia, pointing to an important evolutionarily conserved role for this WDR protein in cilia development and function.


2017 ◽  
Vol 27 (10) ◽  
pp. 1448-1461.e7 ◽  
Author(s):  
Peishan Yi ◽  
Wen-Jun Li ◽  
Meng-Qiu Dong ◽  
Guangshuo Ou

2004 ◽  
Vol 6 (11) ◽  
pp. 1109-1113 ◽  
Author(s):  
Joshua J. Snow ◽  
Guangshuo Ou ◽  
Amy L. Gunnarson ◽  
M. Regina S. Walker ◽  
H. Mimi Zhou ◽  
...  

2017 ◽  
Author(s):  
Peishan Yi ◽  
Chao Xie ◽  
Guangshuo Ou

AbstractKinesin-2 motors power the anterograde intraflagellar transport (IFT), a highly ordered process that assembles and maintains cilia. It remains elusive how kinesin-2 motors are regulated in vivo. Here we perform forward genetic screen to isolate suppressors that rescue the ciliary defects in the constitutive active mutation of OSM-3-kinesin (G444E) in C. elegans sensory neurons. We identify the C. elegans DYF-5 and DYF-18, which encode the homologs of mammalian male germ cell-associated kinase (MAK) and cell cycle-related kinase (CCRK). Using time-lapse fluorescence microscopy, we show that DYF-5 and DYF-18 are IFT cargo molecules and are enriched at the distal segments of sensory cilia. Mutations of dyf-5 and dyf-18 generate the elongated cilia and ectopic localization of kinesin-II at the ciliary distal segments. Genetic analyses reveal that dyf-5 and dyf-18 are also important for stabilizing the interaction between IFT particle and OSM-3-kinesin. Our data suggest that DYF-5 and DYF-18 act in the same pathway to promote handover between kinesin-II and OSM-3 in sensory cilia.


eLife ◽  
2014 ◽  
Vol 3 ◽  
Author(s):  
Diego Huet ◽  
Thierry Blisnick ◽  
Sylvie Perrot ◽  
Philippe Bastin

The construction of cilia and flagella depends on intraflagellar transport (IFT), the bidirectional movement of two protein complexes (IFT-A and IFT-B) driven by specific kinesin and dynein motors. IFT-B and kinesin are associated to anterograde transport whereas IFT-A and dynein participate to retrograde transport. Surprisingly, the small GTPase IFT27, a member of the IFT-B complex, turns out to be essential for retrograde cargo transport in Trypanosoma brucei. We reveal that this is due to failure to import both the IFT-A complex and the IFT dynein into the flagellar compartment. To get further molecular insight about the role of IFT27, GDP- or GTP-locked versions were expressed in presence or absence of endogenous IFT27. The GDP-locked version is unable to enter the flagellum and to interact with other IFT-B proteins and its sole expression prevents flagellum formation. These findings demonstrate that a GTPase-competent IFT27 is required for association to the IFT complex and that IFT27 plays a role in the cargo loading of the retrograde transport machinery.


2004 ◽  
Vol 287 (2) ◽  
pp. C468-C474 ◽  
Author(s):  
M. M. Sedensky ◽  
J. M. Siefker ◽  
J. Y. Koh ◽  
D. M. Miller ◽  
P. G. Morgan

In Caenorhabditis elegans, the gene unc-1 controls anesthetic sensitivity and normal locomotion. The protein UNC-1 is a close homolog of the mammalian protein stomatin and is expressed primarily in the nervous system. Genetic studies in C. elegans have shown that the UNC-1 protein interacts with a sodium channel subunit, UNC-8. In humans, absence of stomatin is associated with abnormal sodium and potassium levels in red blood cells. Stomatin also has been postulated to participate in the formation of lipid rafts, which are membrane microdomains associated with protein complexes, cholesterol, and sphingolipids. In this study, we isolated a low-density, detergent-resistant fraction from cell membranes of C. elegans. This fraction contains cholesterol, sphingolipids, and protein consistent with their identification as lipid rafts. We then probed Western blots of protein from the rafts and found that the UNC-1 protein is almost totally restricted to this fraction. The UNC-8 protein is also found in rafts and coimmunoprecipitates UNC-1. A second stomatin-like protein, UNC-24, also affects anesthetic sensitivity, is found in lipid rafts, and regulates UNC-1 distribution. Mutations in the unc-24 gene alter the distribution of UNC-1 in lipid rafts. Each of these mutations alters anesthetic sensitivity in C. elegans. Because lipid rafts contain many of the putative targets of volatile anesthetics, they may represent a novel class of targets for volatile anesthetics.


2019 ◽  
Author(s):  
Wei Wang ◽  
Bailey A. Allard ◽  
Tana S. Pottorf ◽  
Jay L. Vivian ◽  
Pamela V. Tran

AbstractPrimary cilia are sensory organelles that are essential for eukaryotic development and health. These antenna-like structures are synthesized by intraflagellar transport protein complexes, IFT-B and IFT-A, which mediate bi-directional protein trafficking along the ciliary axoneme. Here using mouse embryonic fibroblasts (MEF), we investigate the ciliary roles of two mammalian orthologues of Chlamydomonas IFT-A gene, IFT139, namely Thm1 (also known as Ttc21b) and Thm2 (Ttc21a). Thm1 loss causes perinatal lethality, and Thm2 loss allows survival into adulthood. At E14.5, the number of Thm1;Thm2 double mutant embryos is lower than that for a Mendelian ratio, indicating deletion of Thm1 and Thm2 causes mid-gestational lethality. We examined the ciliary phenotypes of mutant MEF. Thm1-mutant MEF show decreased cilia assembly, shortened primary cilia, a retrograde IFT defect for IFT and BBS proteins, and reduced ciliary entry of membrane-associated proteins. Thm1-mutant cilia also show a retrograde transport defect for the Hedgehog transducer, Smoothened, and an impaired response to Smoothened agonist, SAG. Thm2-null MEF show normal ciliary dynamics and Hedgehog signaling, but additional loss of a Thm1 allele impairs response to SAG. Further, Thm1;Thm2 double mutant MEF show enhanced cilia disassembly, and relative to Thm1-null MEF, increased impairment of IFT81 retrograde transport and of INPP5E ciliary import. Thus, Thm1 and Thm2 have unique and redundant roles in MEF. Thm1 regulates cilia assembly, and together with Thm2, cilia disassembly. Moreover, Thm1 alone and together with Thm2, regulates ciliary protein trafficking, Hedgehog signaling, and embryogenesis. These findings shed light on mechanisms underlying Thm1-, Thm2- or IFT-A-mediated ciliopathies.


2006 ◽  
Vol 174 (7) ◽  
pp. 931-937 ◽  
Author(s):  
Miki Imanishi ◽  
Nicholas F. Endres ◽  
Arne Gennerich ◽  
Ronald D. Vale

OSM-3 is a Kinesin-2 family member from Caenorhabditis elegans that is involved in intraflagellar transport (IFT), a process essential for the construction and maintenance of sensory cilia. In this study, using a single-molecule fluorescence assay, we show that bacterially expressed OSM-3 in solution does not move processively (multiple steps along a microtubule without dissociation) and displays low microtubule-stimulated adenosine triphosphatase (ATPase) activity. However, a point mutation (G444E) in a predicted hinge region of OSM-3's coiled-coil stalk as well as a deletion of that hinge activate ATPase activity and induce robust processive movement. These hinge mutations also cause a conformational change in OSM-3, causing it to adopt a more extended conformation. The motility of wild-type OSM-3 also can be activated by attaching the motor to beads in an optical trap, a situation that may mimic attachment to IFT cargo. Our results suggest that OSM-3 motility is repressed by an intramolecular interaction that involves folding about a central hinge and that IFT cargo binding relieves this autoinhibition in vivo. Interestingly, the G444E allele in C. elegans produces similar ciliary defects to an osm-3–null mutation, suggesting that autoinhibition is important for OSM-3's biological function.


Sign in / Sign up

Export Citation Format

Share Document