scholarly journals Small-molecule agonists of mammalian Diaphanous–related (mDia) formins reveal an effective glioblastoma anti-invasion strategy

2015 ◽  
Vol 26 (21) ◽  
pp. 3704-3718 ◽  
Author(s):  
Jessica D. Arden ◽  
Kari I. Lavik ◽  
Kaitlin A. Rubinic ◽  
Nicolas Chiaia ◽  
Sadik A. Khuder ◽  
...  

The extensive invasive capacity of glioblastoma (GBM) makes it resistant to surgery, radiotherapy, and chemotherapy and thus makes it lethal. In vivo, GBM invasion is mediated by Rho GTPases through unidentified downstream effectors. Mammalian Diaphanous (mDia) family formins are Rho-directed effectors that regulate the F-actin cytoskeleton to support tumor cell motility. Historically, anti-invasion strategies focused upon mDia inhibition, whereas activation remained unexplored. The recent development of small molecules directly inhibiting or activating mDia-driven F-actin assembly that supports motility allows for exploration of their role in GBM. We used the formin inhibitor SMIFH2 and mDia agonists IMM-01/-02 and mDia2-DAD peptides, which disrupt autoinhibition, to examine the roles of mDia inactivation versus activation in GBM cell migration and invasion in vitro and in an ex vivo brain slice invasion model. Inhibiting mDia suppressed directional migration and spheroid invasion while preserving intrinsic random migration. mDia agonism abrogated both random intrinsic and directional migration and halted U87 spheroid invasion in ex vivo brain slices. Thus mDia agonism is a superior GBM anti-invasion strategy. We conclude that formin agonism impedes the most dangerous GBM component—tumor spread into surrounding healthy tissue. Formin activation impairs novel aspects of transformed cells and informs the development of anti-GBM invasion strategies.

2021 ◽  
Author(s):  
Feng Ying Zhang ◽  
Xia Li ◽  
Ting Ting Huang ◽  
Mei Ling Xiang ◽  
Lin Lin Sun ◽  
...  

Abstract Background Long intergenic non-coding RNA 00839 (LINC00839) has been verified as a cancer-promoting gene in malignancies. However, the significance of LINC00839 in nasopharyngeal carcinoma (NPC) has yet to be elaborated, as well as its underlying mechanism.Methods LINC00839 and miR-454-3p relative expression levels in NPC cells were examined by qRT-PCR. The growth of cells was examined by CCK-8 and colony formation assays. Cell migration and invasion were examined by wound healing and Transwell experiment, respectively. The binding sequence of LINC00839 and miR-454-3p was confirmed by the luciferase reporter gene experiment. The regulatory function of LINC00839 and miR-454-3p on c-Met was investigated by western blot.Results Here, we revealed that LINC00839 was elevated in NPC. Both LINC00839 knockdown and upregulation of miR-454-3p suppressed NPC cells proliferation, invasive capacity and EMT in vitro. Besides, LINC00839 was validated as a miR-454-3p “sponge”, and upregulation of LINC00839 could reverse miR-454-3p-mediated functions in NPC C666-1 and SUNE-1 cells. Furthermore, c-Met was determined to be targeted by miR-454-3p. Notably, c-Met was downregulated by LINC00839 knockdown through sponging miR-454-3p. In vivo, LINC00839 knockdown resulted in a slower tumor growth.Conclusions Altogether, knockdown of LINC00839 inhibits the aggressive properties of NPC cells via sponging miR-454-3p and regulating c-Met.


Cells ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 3583
Author(s):  
Nadine Euskirchen ◽  
Michael A. Nitsche ◽  
Christoph van Thriel

Non-invasive direct current stimulation (DCS) of the human brain induces neuronal plasticity and alters plasticity-related cognition and behavior. Numerous basic animal research studies focusing on molecular and cellular targets of DCS have been published. In vivo, ex vivo, and in vitro models enhanced knowledge about mechanistic foundations of DCS effects. Our review identified 451 papers using a PRISMA-based search strategy. Only a minority of these papers used cell culture or brain slice experiments with DCS paradigms comparable to those applied in humans. Most of the studies were performed in brain slices (9 papers), whereas cell culture experiments (2 papers) were only rarely conducted. These ex vivo and in vitro approaches underline the importance of cell and electric field orientation, cell morphology, cell location within populations, stimulation duration (acute, prolonged, chronic), and molecular changes, such as Ca2+-dependent intracellular signaling pathways, for the effects of DC stimulation. The reviewed studies help to clarify and confirm basic mechanisms of this intervention. However, the potential of in vitro studies has not been fully exploited and a more systematic combination of rodent models, ex vivo, and cellular approaches might provide a better insight into the neurophysiological changes caused by tDCS.


2015 ◽  
Vol 309 (4) ◽  
pp. E357-E369 ◽  
Author(s):  
Vanessa Garnier ◽  
Wael Traboulsi ◽  
Aude Salomon ◽  
Sophie Brouillet ◽  
Thierry Fournier ◽  
...  

PPARγ-deficient mice die at E9.5 due to placental abnormalities. The mechanism by which this occurs is unknown. We demonstrated that the new endocrine factor EG-VEGF controls the same processes as those described for PPARγ, suggesting potential regulation of EG-VEGF by PPARγ. EG-VEGF exerts its functions via prokineticin receptor 1 (PROKR1) and 2 (PROKR2). This study sought to investigate whether EG-VEGF mediates part of PPARγ effects on placental development. Three approaches were used: 1) in vitro, using human primary isolated cytotrophoblasts and the extravillous trophoblast cell line (HTR-8/SVneo); 2) ex vivo, using human placental explants ( n = 46 placentas); and 3) in vivo, using gravid wild-type PPARγ+/− and PPARγ−/− mice. Major processes of placental development that are known to be controlled by PPARγ, such as trophoblast proliferation, migration, and invasion, were assessed in the absence or presence of PROKR1 and PROKR2 antagonists. In both human trophoblast cell and placental explants, we demonstrated that rosiglitazone, a PPARγ agonist, 1) increased EG-VEGF secretion, 2) increased EG-VEGF and its receptors mRNA and protein expression, 3) increased placental vascularization via PROKR1 and PROKR2, and 4) inhibited trophoblast migration and invasion via PROKR2. In the PPARγ−/− mouse placentas, EG-VEGF levels were significantly decreased, supporting an in vivo control of EG-VEGF/PROKRs system during pregnancy. The present data reveal EG-VEGF as a new mediator of PPARγ effects during pregnancy and bring new insights into the fine mechanism of trophoblast invasion.


2021 ◽  
Author(s):  
Yesi Shi ◽  
Gan Lin ◽  
Huili Zheng ◽  
Dan Mu ◽  
Hu Chen ◽  
...  

Abstract BackgroundAutophagy is a conserved catabolic process, which plays an important role in regulating tumor cell motility and degrading protein aggregates. Chemotherapy-induced autophagy may lead to tumor distant metastasis and even chemo-insensitivity in the therapy of hepatocellular carcinoma (HCC). However, a vast majority of HCC cases do not produce a significant response to monotherapy with autophagy inhibitors. ResultsIn this work, we develop a biomimetic co-delivery nanoformulation (TH-NP) co-encapsulating Oxaliplatin (OXA)/HCQ (hydroxychloroquine, an autophagy inhibitor) to execute targeted autophagy inhibition, reduce tumor cell migration and invasion in vitro and attenuate metastasis in vivo. Especially, TH-NPs can significantly improve OXA and HCQ concentration with approximately 21 and 13-fold increment in tumor tissues compared to the free mixture of HCQ/OXA. Moreover, the tumor-targeting TH-NPs release HCQ can alkalize the acidic lysosomes and thus inhibit the fusion of autophagosomes and lysosomes, leading to most effective blockade of autophagic flux compared to various controls. This largely improves chemotherapeutic performance of OXA in subcutaneous and orthotopic HCC mouse models. Importantly, TH-NPs also exhibit the most effective inhibition of tumor metastasis in orthotopic HCCLM3 models, and in the HepG2, Huh-7 or HCCLM3 metastatic mouse models. Then, we illustrate the enhanced metastasis inhibition is attributed to the blockade or reverse of the autophagy-mediated degradation of focal adhesions (FAs) including E-cadherin and paxillin. ConclusionsTH-NPs can perform an enhanced chemotherapy and antimetastatic effect, and may represent a promising strategy for HCC therapy in clinics.


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Yesi Shi ◽  
Gan Lin ◽  
Huili Zheng ◽  
Dan Mu ◽  
Hu Chen ◽  
...  

Abstract Background Autophagy is a conserved catabolic process, which plays an important role in regulating tumor cell motility and degrading protein aggregates. Chemotherapy-induced autophagy may lead to tumor distant metastasis and even chemo-insensitivity in the therapy of hepatocellular carcinoma (HCC). Therefore, a vast majority of HCC cases do not produce a significant response to monotherapy with autophagy inhibitors. Results In this work, we developed a biomimetic nanoformulation (TH-NP) co-encapsulating Oxaliplatin (OXA)/hydroxychloroquine (HCQ, an autophagy inhibitor) to execute targeted autophagy inhibition, reduce tumor cell migration and invasion in vitro and attenuate metastasis in vivo. The tumor cell-specific ligand TRAIL was bioengineered to be stably expressed on HUVECs and the resultant membrane vesicles were wrapped on OXA/HCQ-loaded PLGA nanocores. Especially, TH-NPs could significantly improve OXA and HCQ effective concentration by approximately 21 and 13 times in tumor tissues compared to the free mixture of HCQ/OXA. Moreover, the tumor-targeting TH-NPs released HCQ alkalized the acidic lysosomes and inhibited the fusion of autophagosomes and lysosomes, leading to effective blockade of autophagic flux. In short, the system largely improved chemotherapeutic performance of OXA on subcutaneous and orthotopic HCC mice models. Importantly, TH-NPs also exhibited the most effective inhibition of tumor metastasis in orthotopic HCCLM3 models, and in the HepG2, Huh-7 or HCCLM3 metastatic mice models. Finally, we illustrated the enhanced metastasis inhibition was attributed to the blockade or reverse of the autophagy-mediated degradation of focal adhesions (FAs) including E-cadherin and paxillin. Conclusions TH-NPs can perform an enhanced chemotherapy and antimetastatic effect, and may represent a promising strategy for HCC therapy in clinics. Graphical Abstract


1996 ◽  
Vol 84 (1) ◽  
pp. 201-210 ◽  
Author(s):  
Maryceline T. Espanol ◽  
Lawrence Litt ◽  
Lee-Hong Chang ◽  
Thomas L. James ◽  
Philip R. Weinstein ◽  
...  

Background When perfused neonatal brain slices are studied ex vivo with nuclear magnetic resonance (NMR) spectroscopy, it is possible to use 31P detection to monitor levels of intracellular adenosine triphosphate (ATP), cytosolic pH, and other high-energy phosphates and 1H detection to monitor lactate and glutamate. Adult brain slices of high metabolic integrity are more difficult to obtain for such studies, because the adult cranium is thicker, and postdecapitation revival time is shorter. A common clinical anesthesia phenomenon--loss of temperature regulation during anesthesia, with surface cooling and deep hypothermia, was used to obtain high-quality adult rat cerebrocortical slices for NMR studies. Methods Spontaneously breathing adult rats (350 g), anesthetized with isoflurane in a chamber, were packed in ice and cooled until rectal temperatures decreased to approximately 30 degrees C. An intraaortic injection of heparinized saline at 4 degrees C further cooled the brain to approximately 18 degrees C. Slices were obtained and then recovered at 37 degrees C in oxygenated medium. Interleaved 31P/1H NMR spectra were acquired continually before, during, and after 20 min of no-flow hypoxia (PO2 approximately 0 mmHg). Histologic (Nissl stain) measurements were made from random slices removed at different times in the protocol. Three types of pretreatment were compared in no-flow hypoxia studies. The treatments were: (1) hyperoxia; (2) hypercapnia (50% CO2); and (3) hypoxia, which was accomplished by washing the slices with perfusate equilibrated with 100% N2 and maintaining a 100% N2 gas flow in the air space above the perfusate. Results During hyperoxia, 31P NMR metabolite ratios were identical to those seen in vivo in adult brains, except that, in vitro, the Pi peak was slightly larger than in vivo. A lactate peak was seen in in vitro 1H spectra of slices after metabolic recovery from decapitation, although lactate is barely detectable in vivo in healthy brains. The in vitro lactate peak was attributed to a small population of metabolically impaired cells in an injury layer at the cut edge. NMR spectral resolution from the solenoidal coil exceeded that obtained in vivo in surface coil experiments. Phosphocreatine and ATP became undetectable during oxygen deprivation, which also caused a three- to sixfold increase in the ratio of lactate to N-acetyl-aspartate. Within experimental error, all metabolite concentrations except pHi recovered to control values within 2 h after oxygen restoration. Nissl-stained sections suggested that pretreatment with hypercapnia protected neurons from cell swelling during the brief period of no-flow oxygen deprivation. Conclusions Perfused, respiring adult brain slices having intact metabolic function can be obtained for NMR spectroscopy studies. Such studies have higher spectral resolution than can be obtained in vivo. During such NMR experiments, one can deliver drugs or molecular probes to brain cells and obtain brain tissue specimens for histologic and immunochemical measures of injury. Important ex vivo NMR spectroscopy studies that are difficult or impossible to perform in vivo are feasible in this model.


2010 ◽  
Vol 299 (6) ◽  
pp. C1277-C1284 ◽  
Author(s):  
Amy S. Yu ◽  
Bruce A. Hirayama ◽  
Gerald Timbol ◽  
Jie Liu ◽  
Ernest Basarah ◽  
...  

This work provides evidence of previously unrecognized uptake of glucose via sodium-coupled glucose transporters (SGLTs) in specific regions of the brain. The current understanding of functional glucose utilization in brain is largely based on studies using positron emission tomography (PET) with the glucose tracer 2-deoxy-2-[F-18]fluoro-d-glucose (2-FDG). However, 2-FDG is only a good substrate for facilitated-glucose transporters (GLUTs), not for SGLTs. Thus, glucose accumulation measured by 2-FDG omits the role of SGLTs. We designed and synthesized two high-affinity tracers: one, α-methyl-4-[F-18]fluoro-4-deoxy-d-glucopyranoside (Me-4FDG), is a highly specific SGLT substrate and not transported by GLUTs; the other one, 4-[F-18]fluoro-4-deoxy-d-glucose (4-FDG), is transported by both SGLTs and GLUTs and will pass through the blood brain barrier (BBB). In vitro Me-4FDG autoradiography was used to map the distribution of uptake by functional SGLTs in brain slices with a comparable result from in vitro 4-FDG autoradiography. Immunohistochemical assays showed that uptake was consistent with the distribution of SGLT protein. Ex vivo 4-FDG autoradiography showed that SGLTs in these areas are functionally active in the normal in vivo brain. The results establish that SGLTs are a normal part of the physiology of specific areas of the brain, including hippocampus, amygdala, hypothalamus, and cerebral cortices. 4-FDG PET imaging also established that this BBB-permeable SGLT tracer now offers a functional imaging approach in humans to assess regulation of SGLT activity in health and disease.


2012 ◽  
Vol 82 (3) ◽  
pp. 228-232 ◽  
Author(s):  
Mauro Serafini ◽  
Giuseppa Morabito

Dietary polyphenols have been shown to scavenge free radicals, modulating cellular redox transcription factors in different in vitro and ex vivo models. Dietary intervention studies have shown that consumption of plant foods modulates plasma Non-Enzymatic Antioxidant Capacity (NEAC), a biomarker of the endogenous antioxidant network, in human subjects. However, the identification of the molecules responsible for this effect are yet to be obtained and evidences of an antioxidant in vivo action of polyphenols are conflicting. There is a clear discrepancy between polyphenols (PP) concentration in body fluids and the extent of increase of plasma NEAC. The low degree of absorption and the extensive metabolism of PP within the body have raised questions about their contribution to the endogenous antioxidant network. This work will discuss the role of polyphenols from galenic preparation, food extracts, and selected dietary sources as modulators of plasma NEAC in humans.


1992 ◽  
Vol 68 (06) ◽  
pp. 687-693 ◽  
Author(s):  
P T Larsson ◽  
N H Wallén ◽  
A Martinsson ◽  
N Egberg ◽  
P Hjemdahl

SummaryThe significance of platelet β-adrenoceptors for platelet responses to adrenergic stimuli in vivo and in vitro was studied in healthy volunteers. Low dose infusion of the β-adrenoceptor agonist isoprenaline decreased platelet aggregability in vivo as measured by ex vivo filtragometry. Infusion of adrenaline, a mixed α- and β-adrenoceptor agonist, increased platelet aggregability in vivo markedly, as measured by ex vivo filtragometry and plasma β-thromboglobulin levels. Adrenaline levels were 3–4 nM in venous plasma during infusion. Both adrenaline and high dose isoprenaline elevated plasma von Willebrand factor antigen levels β-Blockade by propranolol did not alter our measures of platelet aggregability at rest or during adrenaline infusions, but inhibited adrenaline-induced increases in vWf:ag. In a model using filtragometry to assess platelet aggregability in whole blood in vitro, propranolol enhanced the proaggregatory actions of 5 nM, but not of 10 nM adrenaline. The present data suggest that β-adrenoceptor stimulation can inhibit platelet function in vivo but that effects of adrenaline at high physiological concentrations are dominated by an α-adrenoceptor mediated proaggregatory action.


Sign in / Sign up

Export Citation Format

Share Document