scholarly journals Dynamic actin filaments control the mechanical behavior of the human red blood cell membrane

2015 ◽  
Vol 26 (9) ◽  
pp. 1699-1710 ◽  
Author(s):  
David S. Gokhin ◽  
Roberta B. Nowak ◽  
Joseph A. Khoory ◽  
Alfonso de la Piedra ◽  
Ionita C. Ghiran ◽  
...  

Short, uniform-length actin filaments function as structural nodes in the spectrin-actin membrane skeleton to optimize the biomechanical properties of red blood cells (RBCs). Despite the widespread assumption that RBC actin filaments are not dynamic (i.e., do not exchange subunits with G-actin in the cytosol), this assumption has never been rigorously tested. Here we show that a subpopulation of human RBC actin filaments is indeed dynamic, based on rhodamine-actin incorporation into filaments in resealed ghosts and fluorescence recovery after photobleaching (FRAP) analysis of actin filament mobility in intact RBCs (∼25–30% of total filaments). Cytochalasin-D inhibition of barbed-end exchange reduces rhodamine-actin incorporation and partially attenuates FRAP recovery, indicating functional interaction between actin subunit turnover at the single-filament level and mobility at the membrane-skeleton level. Moreover, perturbation of RBC actin filament assembly/disassembly with latrunculin-A or jasplakinolide induces an approximately twofold increase or ∼60% decrease, respectively, in soluble actin, resulting in altered membrane deformability, as determined by alterations in RBC transit time in a microfluidic channel assay, as well as by abnormalities in spontaneous membrane oscillations (flickering). These experiments identify a heretofore-unrecognized but functionally important subpopulation of RBC actin filaments, whose properties and architecture directly control the biomechanical properties of the RBC membrane.

Blood ◽  
2010 ◽  
Vol 116 (14) ◽  
pp. 2590-2599 ◽  
Author(s):  
Jeannette D. Moyer ◽  
Roberta B. Nowak ◽  
Nancy E. Kim ◽  
Sandra K. Larkin ◽  
Luanne L. Peters ◽  
...  

Abstract The short actin filaments in the red blood cell (RBC) membrane skeleton are capped at their pointed ends by tropomodulin 1 (Tmod1) and coated with tropomyosin (TM) along their length. Tmod1-TM control of actin filament length is hypothesized to regulate spectrin-actin lattice organization and membrane stability. We used a Tmod1 knockout mouse to investigate the in vivo role of Tmod1 in the RBC membrane skeleton. Western blots of Tmod1-null RBCs confirm the absence of Tmod1 and show the presence of Tmod3, which is normally not present in RBCs. Tmod3 is present at only one-fifth levels of Tmod1 present on wild-type membranes, but levels of actin, TMs, adducins, and other membrane skeleton proteins remain unchanged. Electron microscopy shows that actin filament lengths are more variable with spectrin-actin lattices displaying abnormally large and more variable pore sizes. Tmod1-null mice display a mild anemia with features resembling hereditary spherocytic elliptocytosis, including decreased RBC mean corpuscular volume, cellular dehydration, increased osmotic fragility, reduced deformability, and heterogeneity in osmotic ektacytometry. Insufficient capping of actin filaments by Tmod3 may allow greater actin dynamics at pointed ends, resulting in filament length redistribution, leading to irregular and attenuated spectrin-actin lattice connectivity, and concomitant RBC membrane instability.


2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Tommi Kotila ◽  
Hugo Wioland ◽  
Giray Enkavi ◽  
Konstantin Kogan ◽  
Ilpo Vattulainen ◽  
...  

AbstractThe ability of cells to generate forces through actin filament turnover was an early adaptation in evolution. While much is known about how actin filaments grow, mechanisms of their disassembly are incompletely understood. The best-characterized actin disassembly factors are the cofilin family proteins, which increase cytoskeletal dynamics by severing actin filaments. However, the mechanism by which severed actin filaments are recycled back to monomeric form has remained enigmatic. We report that cyclase-associated-protein (CAP) works in synergy with cofilin to accelerate actin filament depolymerization by nearly 100-fold. Structural work uncovers the molecular mechanism by which CAP interacts with actin filament pointed end to destabilize the interface between terminal actin subunits, and subsequently recycles the newly-depolymerized actin monomer for the next round of filament assembly. These findings establish CAP as a molecular machine promoting rapid actin filament depolymerization and monomer recycling, and explain why CAP is critical for actin-dependent processes in all eukaryotes.


2018 ◽  
Author(s):  
Hugo Wioland ◽  
Antoine Jegou ◽  
Guillaume Romet-Lemonne

ABSTRACTActin Depolymerizing Factor (ADF)/cofilin is the main protein family promoting the disassembly of actin filaments, which is essential for numerous cellular functions. ADF/cofilin proteins disassemble actin filaments through different reactions, as they bind to their sides, sever them, and promote the depolymerization of the resulting ADF/cofilin-saturated filaments. Moreover, the efficiency of ADF/cofilin is known to be very sensitive to pH. ADF/cofilin thus illustrates two challenges in actin biochemistry: separating the different regulatory actions of a single protein, and characterizing them as a function of specific biochemical conditions. Here, we investigate the different reactions of ADF/cofilin on actin filaments, over four different values of pH ranging from pH 6.6 to pH 7.8, using single filament microfluidics techniques. We show that lowering pH reduces the effective filament severing rate by increasing the rate at which filaments become saturated by ADF/cofilin, thereby reducing the number of ADF/cofilin domain boundaries, where severing can occur. The severing rate per domain boundary, however, remains unchanged at different pH values. The ADF/cofilin-decorated filaments (refered to as “cofilactin” filaments) depolymerize from both ends. We show here that, at physiological pH (pH 7.0 to 7.4), the pointed end depolymerization of cofilactin filaments is barely faster than that of bare filaments. In contrast, cofilactin barbed ends undergo an “unstoppable” depolymerization (depolymerizing for minutes despite the presence of free actin monomers and capping protein in solution), throughout our range of pH. We thus show that, at physiological pH, the main contribution of ADF/cofilin to filament depolymerization is at the barbed end.A number of key cellular processes rely on the proper assembly and disassembly of actin filament networks 1. The central regulator of actin disassembly is the ADF/cofilin protein family 2, 3, which comprises three isoforms in mammals: cofilin-1 (cof1, found in nearly all cell types), cofilin-2 (cof2, found primarily in muscles) and Actin Depolymerization Factor (ADF, found mostly in neurons and epithelial cells). We refer to them collectively as “ADF/cofilin”.Over the years, the combined efforts of several labs have led to the following understanding of actin filament disassembly by ADF/cofilin. Molecules of ADF/cofilin bind stoechiometrically 4, 5 to the sides of actin filaments, with a strong preference for ADP-actin subunits 6–10. Though ADF/cofilin molecules do not contact each other 11, they bind in a cooperative manner, leading to the formation of ADF/cofilin domains on the filaments 5, 7, 9, 12, 13. Compared to bare F-actin, the filament portions decorated by ADF/cofilin (refered to as “cofilactin”) are more flexible 14, 15 and exhibit a shorter right-handed helical pitch, with a different subunit conformation 11, 16–19. Thermal fluctuations are then enough to sever actin filaments at (or near) domain boundaries8, 9, 13, 20, 21. Cofilactin filaments do not sever, but depolymerize from both ends 13 thereby renewing the actin monomer pool.ADF/cofilin thus disassembles actin filaments through the combination of different actions. As such, it vividly illustrates a current challenge in actin biochemistry: identifying and quantifying the multiple reactions involving a single protein. This is a very difficult task for bulk solution assays, where a large number of reactions take place simultaneously, and single-filament techniques have played a key role in deciphering ADF/cofilin’s actions 9, 13, 20, 22–24. In particular, the microfluidics-based method that we have developed over the past years, is a powerful tool for such investigations 25. It has recently allowed us to quantify the kinetics of the aforementioned reactions, and to discover that ADF/cofilin-saturated filament (cofilactin) barbed ends can hardly stop depolymerizing, even when ATP-G-actin and capping protein are present in solution 13.In addition, ADF/cofilin is very sensitive to pH 4, 5, 26–29. In cells, pH can be a key regulatory factor 30. It can vary between compartments, between cell types, and be specifically modulated. We can consider that a typical cytoplasmic pH would be comprised between 7.0 and 7.4. Recently, we have quantified the different reactions involving ADF/cofilin at pH 7.8 13, leaving open the question of how these reaction rates are indivdually affected by pH variations. For instance, it has been reported that ADF/cofilin is a more potent filament disassembler at higher pH values 4, 5, 26–29 but the actual impact of pH on the rate constants of individual reactions has yet to be characterized. Moreover, whether the unstoppable barbed end depolymerization that we have recently discovered for ADF/cofilin-saturated filaments at pH 7.8 13 remains significant at lower, more physiological pH values is an open question.Here, we investigate how the different contributions of ADF/cofilin (using unlabeled ADF, unlabeled cof1 and eGFP-cof1) to actin filament disassembly depend on pH, which we varied from 6.6 to 7.8. We first present the methods which we have used to do so, based on the observation of individual filaments, using microfluidics (Fig. 1). We measured cofilin’s abitility to decorate actin filament by binding to its sides (Fig. 2), and the rate at which individual cofilin domains severed actin filaments (Fig. 3). We next quantified the kinetic parameters of filament ends, for bare and ADF/cofilin-saturated (cofilactin) filaments (Fig. 4), and we specifically quantified the extent to which the barbed ends of cofilactin filaments are in a state which can hardly stop depolymerizing (Fig. 5). We finally summarize our results (Fig. 6).


1995 ◽  
Vol 128 (1) ◽  
pp. 61-70 ◽  
Author(s):  
D A Schafer ◽  
C Hug ◽  
J A Cooper

The actin filaments of myofibrils are highly organized; they are of a uniform length and polarity and are situated in the sarcomere in an aligned array. We hypothesized that the barbed-end actin-binding protein, CapZ, directs the process of actin filament assembly during myofibrillogenesis. We tested this hypothesis by inhibiting the actin-binding activity of CapZ in developing myotubes in culture using two different methods. First, injection of a monoclonal antibody that prevents the interaction of CapZ and actin disrupts the non-striated bundles of actin filaments formed during the early stages of myofibril formation in skeletal myotubes in culture. The antibody, when injected at concentrations lower than that required for disrupting the actin filaments, binds at nascent Z-disks. Since the interaction of CapZ and the monoclonal antibody are mutually exclusive, this result indicates that CapZ binds nascent Z-disks independent of an interaction with actin filaments. In a second approach, expression in myotubes of a mutant form of CapZ that does not bind actin results in a delay in the appearance of actin in a striated pattern in myofibrils. The organization of alpha-actinin at Z-disks also is delayed, but the organization of titin and myosin in sarcomeres is not significantly altered. We conclude that the interaction of CapZ and actin is important for the organization of actin filaments of the sarcomere.


1989 ◽  
Vol 108 (5) ◽  
pp. 1717-1726 ◽  
Author(s):  
D J Kwiatkowski ◽  
P A Janmey ◽  
H L Yin

Gelsolin can sever actin filaments, nucleate actin filament assembly, and cap the fast-growing end of actin filaments. These functions are activated by Ca2+ and inhibited by polyphosphoinositides (PPI). We report here studies designed to delineate critical domains within gelsolin by deletional mutagenesis, using COS cells to secrete truncated plasma gelsolin after DNA transfection. Deletion of 11% of gelsolin from the COOH terminus resulted in a major loss of its ability to promote the nucleation step in actin filament assembly, suggesting that a COOH-terminal domain is important in this function. In contrast, derivatives with deletion of 79% of the gelsolin sequence exhibited normal PPI-regulated actin filament-severing activity. Combined with previous results using proteolytic fragments, we deduce that an 11-amino acid sequence in the COOH terminus of the smallest severing gelsolin derivative identified here mediates PPI-regulated binding of gelsolin to the sides of actin filaments before severing. Deletion of only 3% of gelsolin at the COOH terminus, including a dicarboxylic acid sequence similar to that found on the NH2 terminus of actin, resulted in a loss of Ca2+-requirement for filament severing and monomer binding. Since these residues in actin have been implicated as potential binding sites for gelsolin, our results raise the possibility that the analogous sequence at the COOH terminus of gelsolin may act as a Ca2+-regulated pseudosubstrate. However, derivatives with deletion of 69-79% of the COOH-terminal residues of gelsolin exhibited normal Ca2+ regulation of severing activity, establishing the intrinsic Ca2+ regulation of the NH2-terminal region. One or both mechanisms of Ca2+ regulation may occur in members of the gelsolin family of actin-severing proteins.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 807-807
Author(s):  
Velia M. Fowler ◽  
Jeannette Moyer ◽  
Roberta Nowak ◽  
Kimberly Fritz-Six ◽  
Carmela Ferreira-Mota ◽  
...  

Abstract Tropomodulin1 (Tmod1) caps the pointed ends of actin filaments in the red blood cell (RBC) membrane skeleton and is proposed to regulate actin filament lengths and organization in the membrane skeleton. Tmod1 is first expressed at E7.5 of mouse embryogenesis in blood islands of the yolk sac and in the cardiac myocytes of the developing heart tube. Targeted deletion of the Tmod1 gene in mice leads to abnormal cardiac development and defective vasculogenesis and hematopoesis in the yolk sac, followed by embryonic lethality between E9.5–10. To investigate the function of Tmod1 in RBCs we rescued the embryonic lethality of the Tmod1 null mouse by crossing with a TOT mouse that expresses a Tmod1 transgene in the heart under the control of the α-myosin heavy chain promoter. Genotyping of litters from crosses of Tmod1-/+;TOT+ mice with Tmod1+/− mice demonstrates that embryos with no endogenous Tmod1 but expressing the Tmod1 transgene (Tmod1−/−;TOT+) develop to term with no apparent defects in vasculogenesis or hematopoeisis. Western blotting and immunofluorescence staining demonstrates that Tmod1 protein is present in the heart but absent from RBCs in Tmod1−/−;TOT+ rescued embryos or adult mice. Instead, the Tmod3 isoform that is normally present in embryonic RBCs, but not detected in adult RBCs of wild-type mice, is increased on the membranes of Tmod1-deficient adult RBCs. Hematological analyses reveal that these Tmod1-deficient mice exhibit a compensated mild hemolytic anemia, with decreased mean corpuscular volume (MCV) and mean corpuscular hemoglobin (MCH), increased red cell distribution width (RDW), and reticulocytosis. Quantitative western blotting demonstrates that major RBC membrane proteins are not altered in the absence of Tmod1, but that there is about a two-fold increase in levels of actin and tropomyosin on the membrane, suggesting that actin filaments may be longer than in normal RBCs. We conclude that 1) Tmod1 in RBCs is not required for embryonic development or viability, 2) yolk sac and hematopoetic defects in Tmod1 null mice are secondary to cardiac defects, 3) Tmod’s function in embryonic RBCs may be performed by the Tmod3 isoform that is normally expressed in these RBCs, and 4) the absence of Tmod1 in adult RBCs is incompletely compensated by up-regulation of Tmod3, leading to altered actin filaments, decreased membrane stability and a mild hemolytic anemia.


2003 ◽  
Vol 161 (3) ◽  
pp. 557-570 ◽  
Author(s):  
Kurt L. Barkalow ◽  
Joseph E. Italiano ◽  
Denise E. Chou ◽  
Yoichiro Matsuoka ◽  
Vann Bennett ◽  
...  

Aspectrin-based skeleton uniformly underlies and supports the plasma membrane of the resting platelet, but remodels and centralizes in the activated platelet. α-Adducin, a phosphoprotein that forms a ternary complex with F-actin and spectrin, is dephosphorylated and mostly bound to spectrin in the membrane skeleton of the resting platelet at sites where actin filaments attach to the ends of spectrin molecules. Platelets activated through protease-activated receptor 1, FcγRIIA, or by treatment with PMA phosphorylate adducin at Ser726. Phosphoadducin releases from the membrane skeleton concomitant with its dissociation from spectrin and actin. Inhibition of PKC blunts adducin phosphorylation and release from spectrin and actin, preventing the centralization of spectrin that normally follows cell activation. We conclude that adducin targets actin filament ends to spectrin to complete the assembly of the resting membrane skeleton. Dissociation of phosphoadducin releases spectrin from actin, facilitating centralization of spectrin, and leads to the exposure of barbed actin filament ends that may then participate in converting the resting platelet's disc shape into its active form.


A number of proteins that bind specifically to the barbed ends of actin filaments in a cytochalasin-like manner have been purified to various degrees from a variety of muscle and non-muscle cells and tissues. Preliminary evidence also indicates that proteins that interact with the pointed ends of filaments are present in skeletal muscle. Because of their ability to cap one or the other end of an actin filament, we have designated this class of proteins as the ‘capactins’. On the basis of their effect on actin filament assembly and interaction in vitro , we propose that the capactins play important roles in cellular regulation of actin-based cytoskeletal and contractile functions. Our finding that the disappearance of actin filament bundles in virally transformed fibroblasts can be correlated with an increase in capactin activity in the extracts of these cells is consistent with this hypothesis.


1983 ◽  
Vol 96 (4) ◽  
pp. 1097-1107 ◽  
Author(s):  
EM Bonder ◽  
MS Mooseker

We have re-examined the Ca(++)-dependent interaction of an intestinal microvillar 95- kdalton protein (MV-95K) and actin using the isolated acrosomal process bundles from limulus sperm. Making use of the processes as nuclei for assembling actin filaments, we quantitatively and qualitatively examined MV-95K's effect on filament assembly and on F- actin, both in the presence and in the absence of Ca(++). The acrosomal processes are particularly advantageous for this approach because they nucleate large numbers of filaments, they are extremely stable, and their morphology can be used to determine the polarity of any nucleated filaments. When filament nucleation was initiated in the presence of MV-95K and the absence of Ca(++), there was biased filament assembly from the bundle ends. The calculated elongation rates from both the barbed and pointed filament ends were virtually indistinguishable from control preparations. In the presence of Ca(++), MV-95K completely inhibited filament assembly from the barbed filament end without affecting the initial rate of assembly from the pointed filament end. The inhibition of assembly results from MV-95K binding to and capping the barbed filament end, thereby preventing monomer addition. This indicates that, while MV-95K is a potent nucleator of actin assembly, it is also a potent inhibitor of actin filament elongation. To examine the effects of MV-95K on F-actin in the presence of Ca(++), we developed an assay where MV-95K is added to filaments previously assembled from acrosomal processes without causing filament breakage during mixing. These results clearly demonstrated that rapid filament shortening by MV-95K results through a mechanism of disrupting intrafilament monomer-monomer interactions. Finally, we show that tropomyosin-containing actin filaments are insensitive to cutting, but not to capping, by MV-95K in the presence of Ca(++).


2020 ◽  
Author(s):  
Hugo Wioland ◽  
Stéphane Frémont ◽  
Bérengère Guichard ◽  
Arnaud Echard ◽  
Antoine Jégou ◽  
...  

ABSTRACTProteins of the ADF/cofilin family play a central role in the disassembly of actin filaments, and their activity must be tightly regulated in cells. Recently, the oxidation of actin filaments by the enzyme MICAL1 was found to amplify the severing action of cofilin through unclear mechanisms. Two essential factors normally prevent filament disassembly: the inactivation of cofilin by phosphorylation, and the protection of filaments by tropomyosins, but whether actin oxidation might interfere with these safeguard mechanisms is unknown. Using single filament experiments in vitro, we found that actin filament oxidation by MICAL1 increases, by several orders of magnitude, both cofilin binding and severing rates, explaining the dramatic synergy between oxidation and cofilin for filament disassembly. Remarkably, we found that actin oxidation bypasses the need for cofilin activation by dephosphorylation. Indeed, non-activated, phosphomimetic S3D-cofilin binds and severs oxidized actin filaments rapidly, in conditions where non-oxidized filaments are unaffected. Finally, tropomyosin Tpm1.8 loses its ability to protect filaments from cofilin severing activity when actin is oxidized by MICAL1. Together, our results show that MICAL1-induced oxidation of actin filaments suppresses their physiological protection from the action of cofilin. We propose that in cells, direct post-translational modification of actin filaments by oxidation is a way to trigger their severing, in spite of being decorated by tropomyosin, and without requiring the activation of cofilin.


Sign in / Sign up

Export Citation Format

Share Document