scholarly journals Centrosome-intrinsic mechanisms modulate centrosome integrity during fever

2015 ◽  
Vol 26 (19) ◽  
pp. 3451-3463 ◽  
Author(s):  
Anastassiia Vertii ◽  
Wendy Zimmerman ◽  
Maria Ivshina ◽  
Stephen Doxsey

The centrosome is critical for cell division, ciliogenesis, membrane trafficking, and immunological synapse function. The immunological synapse is part of the immune response, which is often accompanied by fever/heat stress (HS). Here we provide evidence that HS causes deconstruction of all centrosome substructures primarily through degradation by centrosome-associated proteasomes. This renders the centrosome nonfunctional. Heat-activated degradation is centrosome selective, as other nonmembranous organelles (midbody, kinetochore) and membrane-bounded organelles (mitochondria) remain largely intact. Heat-induced centrosome inactivation was rescued by targeting Hsp70 to the centrosome. In contrast, Hsp70 excluded from the centrosome via targeting to membranes failed to rescue, as did chaperone inactivation. This indicates that there is a balance between degradation and chaperone rescue at the centrosome after HS. This novel mechanism of centrosome regulation during fever contributes to immunological synapse formation. Heat-induced centrosome inactivation is a physiologically relevant event, as centrosomes in leukocytes of febrile patients are disrupted.

PLoS ONE ◽  
2017 ◽  
Vol 12 (12) ◽  
pp. e0189545 ◽  
Author(s):  
Justyna M. Meissner ◽  
Aleksander F. Sikorski ◽  
Tomasz Nawara ◽  
Jakub Grzesiak ◽  
Krzysztof Marycz ◽  
...  

2021 ◽  
Vol 672 (1) ◽  
pp. 012041
Author(s):  
D Pantaya ◽  
R Y Pratama ◽  
T A Marjiatin ◽  
N. Ningsih ◽  
G. Syaikhullah

2020 ◽  
Author(s):  
Juan José Saez ◽  
Stéphanie Dogniaux ◽  
Massiullah Shafaq-Zadah ◽  
Ludger Johannes ◽  
Claire Hivroz ◽  
...  

ABSTRACTLAT is an important player of the signaling cascade induced by TCR activation. This adapter molecule is present at the plasma membrane of T lymphocytes and more abundantly in intracellular compartments. Upon T-cell activation the intracellular pool of LAT is recruited to the immune synapse (IS). We previously described two pathways controlling LAT trafficking: retrograde transport from endosomes to the TGN, and anterograde traffic from the Golgi to the IS. We address the specific role of 4 proteins, the GTPase Rab6, the t-SNARE syntaxin-16, the v-SNARE VAMP7 and the golgin GMAP210, in each pathway. Using different methods (endocytosis and Golgi trap assays, confocal and TIRF microscopy, TCR-signalosome pull down) we show that syntaxin-16 is regulating the retrograde transport of LAT whereas VAMP7 is regulating the anterograde transport. Moreover, GMAP210 and Rab6, known to contribute in both pathways, are in our cellular context specifically and respectively involved in anterograde and retrograde transport of LAT. Altogether, our data describe how retrograde and anterograde pathways coordinate LAT enrichment at the IS and point the Golgi as a central hub for the polarized recruitment of LAT to the IS. The role that this finely-tuned transport of signaling molecules plays in T-cell activation is discussed.


Sign in / Sign up

Export Citation Format

Share Document