scholarly journals ALADIN is required for the production of fertile mouse oocytes

2017 ◽  
Vol 28 (19) ◽  
pp. 2470-2478 ◽  
Author(s):  
Sara Carvalhal ◽  
Michelle Stevense ◽  
Katrin Koehler ◽  
Ronald Naumann ◽  
Angela Huebner ◽  
...  

Asymmetric cell divisions depend on the precise placement of the spindle apparatus. In mammalian oocytes, spindles assemble close to the cell’s center, but chromosome segregation takes place at the cell periphery where half of the chromosomes are expelled into small, nondeveloping polar bodies at anaphase. By dividing so asymmetrically, most of the cytoplasmic content within the oocyte is preserved, which is critical for successful fertilization and early development. Recently we determined that the nucleoporin ALADIN participates in spindle assembly in somatic cells, and we have also shown that female mice homozygously null for ALADIN are sterile. In this study we show that this protein is involved in specific meiotic stages, including meiotic resumption, spindle assembly, and spindle positioning. In the absence of ALADIN, polar body extrusion is compromised due to problems in spindle orientation and anchoring at the first meiotic anaphase. ALADIN null oocytes that mature far enough to be fertilized in vitro are unable to support embryonic development beyond the two-cell stage. Overall, we find that ALADIN is critical for oocyte maturation and appears to be far more essential for this process than for somatic cell divisions.

2016 ◽  
Author(s):  
Sara Carvalhal ◽  
Michelle Stevense ◽  
Katrin Koehler ◽  
Ronald Naumann ◽  
Angela Huebner ◽  
...  

Asymmetric cell divisions depend upon the precise placement of the mitotic spindle. In mammalian oocytes, spindles assemble close to the cell center but chromosome segregation takes place at the cell periphery where half of the chromosomes are expelled into small, non-developing polar bodies at anaphases. By dividing so asymmetrically, most of the cytoplasmic content within the oocyte is preserved, which is critical for successful fertilization and early development. Recently, we determined that the nucleoporin ALADIN participates in spindle assembly in somatic cells, and we have also shown that female mice homozygous deficient for ALADIN are sterile. In this study we show that this protein is involved in specific meiotic stages including meiotic resumption, spindle assembly, and spindle positioning. In the absence of ALADIN, polar body extrusion is impaired in a majority of oocytes due to problems in spindle orientation prior to the first meiotic anaphase. Those few oocytes that can mature far enough to be fertilized in vitro are unable to support embryonic development beyond the two-cell stage. Overall, we find that ALADIN is critical for oocyte maturation and appears to be far more essential for this process than for somatic cell divisions.


2020 ◽  
Author(s):  
Aleesa J. Schlientz ◽  
Bruce Bowerman

AbstractThe requirements for oocyte meiotic cytokinesis during polar body extrusion are not well understood. In particular, the relationship between the oocyte meiotic spindle and polar body contractile ring dynamics remains largely unknown. We have used live cell imaging and spindle assembly defective mutants lacking the function of CLASP/CLS-2, kinesin-12/KLP-18, or katanin/MEI-1 to investigate the relationship between meiotic spindle structure and polar body extrusion in C. elegans oocytes. We show that spindle bipolarity and chromosome segregation are not required for polar body contractile ring formation and chromosome extrusion in klp-18 mutants, but oocytes with severe spindle assembly defects due to loss of CLS-2 or MEI-1 have penetrant and distinct polar body extrusion defects: CLS-2 is required early for contractile ring assembly or stability, while MEI-1 is required later for contractile ring constriction. We also show that CLS-2 negatively regulates membrane ingression throughout the oocyte cortex during meiosis I, and we explore the relationship between global cortical dynamics and oocyte meiotic cytokinesis.Author SummaryThe precursor cells that produce gametes—sperm and eggs in animals—have two copies of each chromosome, one from each parent. These precursors undergo specialized cell divisions that leave each gamete with only one copy of each chromosome; defects that produce incorrect chromosome number cause severe developmental abnormalities. In oocytes, these cell divisions are highly asymmetric, with extra chromosomes discarded into small membrane bound polar bodies, leaving one chromosome set within the much larger oocyte. How oocytes assemble the contractile apparatus that pinches off polar bodies remains poorly understood. To better understand this process, we have used the nematode Caenorhabditis elegans to investigate the relationship between the bipolar structure that separates oocyte chromosomes, called the spindle, and assembly of the contractile apparatus that pinches off polar bodies. We used a comparative approach, examining this relationship in three spindle assembly defective mutants. Bipolar spindle assembly and chromosome separation were not required for polar body extrusion, as it occurred normally in mutants lacking a protein called KLP-18. However, mutants lacking the protein CLS-2 failed to assemble the contractile apparatus, while mutants lacking the protein MEI-1 assembled a contractile apparatus that failed to fully constrict. We also found that CLS-2 down-regulates membrane ingression throughout the oocyte surface, and we explored the relationship between oocyte membrane dynamics and polar body extrusion.


Author(s):  
Hieu Nguyen ◽  
Hongwen Wu ◽  
Anna Ung ◽  
Yukiko Yamazaki ◽  
Ben Fogelgren ◽  
...  

Abstract Origin Recognition Complex subunit 4 (ORC4) is a DNA binding protein required for DNA replication. During oocyte maturation, after the last oocyte DNA replication step and before zygotic DNA replication, the oocyte undergoes two meiotic cell divisions in which half the DNA is ejected in much smaller polar bodies. We previously demonstrated that ORC4 forms a cytoplasmic cage around the DNA that is ejected in both polar body extrusion (PBE) events. Here, we used ZP3 activated Cre to delete exon 7 of Orc4 during oogenesis to test how it affected both predicted functions of ORC4: its recently discovered role in PBE and its well-known role in DNA synthesis. Orc4 deletion severely reduced PBE. Almost half of Orc4-depleted GV oocytes cultured in vitro arrested before anaphase I (48%), and only 25% produced normal first polar bodies. This supports the role of ORC4 in PBE and suggests that transcription of the full length Orc4 during oogenesis is required for efficient PBE. Orc4 deletion also abolished zygotic DNA synthesis. A reduced number of Orc4-depleted oocytes developed to the MII stage and after activation these oocytes arrested at the 2-cell stage, without undergoing DNA synthesis. This confirms that transcription of full length Orc4 after the primary follicle stage is required for zygotic DNA replication. The data also suggest that MII oocytes do not have a replication licensing checkpoint since cytokinesis progressed without DNA synthesis. Together the data confirm that oocyte ORC4 is important for both PBE and zygotic DNA synthesis.


2011 ◽  
Vol 49 (No. 3) ◽  
pp. 93-98 ◽  
Author(s):  
I. Petrová ◽  
M. Sedmíková ◽  
E. Chmelíková ◽  
D. Švestková ◽  
R. Rajmon

Porcine oocytes matured in vitro develop in various ways if they are further cultivated. In our studies these oocytes were cultivated for 1 to 5 days (in vitro aging). During the 1st day of aging, most of them remained at the stage of metaphase II (98%). Then many oocytes underwent the spontaneous parthenogenetic activation. The portion of activated oocytes reached its peak after 2 or 3 days of aging in vitro (39 or 45%). The portion of fragmented oocytes peaked at the same time (28%). During subsequent aging in vitro (i.e. day 4 or 5 of aging), the portion of lysed oocytes significantly increased (30 or 37%). The highest portion of spontaneously activated parthenogenetic embryos at a pronuclear stage (35%) was observed during the 2nd day of aging in vitro. These pronuclear embryos had mainly one polar body with two pronuclei (47% of all pronuclear embryos) or two polar bodies with one pronucleus (38% of all pronuclear embryos). During the 3rd and 5th day of in vitro aging, there was a significant increase in the portion of parthenogenetic embryos cleaved to the 2-cell or 3-cell stage. When considering the prolonged in vitro culture of porcine oocyte, only the first day of aging should be taken into account, since beyond this time significant changes, i.e. parthenogenesis, fragmentation or lysis, occurred in oocytes under in vitro conditions.  


Reproduction ◽  
2004 ◽  
Vol 128 (5) ◽  
pp. 595-605 ◽  
Author(s):  
Nadine M Richings ◽  
Geoffrey Shaw ◽  
Peter D Temple-Smith ◽  
Marilyn B Renfree

Here we report the first use of intra-cytoplasmic sperm injection (ICSI) in a marsupial, the tammar wallaby (Macropus eugenii ), to achieve in vitro fertilization and cleavage. A single epididymal spermatozoon was injected into the cytoplasm of each mature oocyte collected from Graafian follicles or from the oviduct within hours of ovulation. The day after sperm injection, oocytes were assessed for the presence of pronuclei and polar body extrusion and in vitro development was monitored for up to 4 days. After ICSI, three of four (75%) follicular and four of eight (50%) tubal oocytes underwent cleavage. The cleavage pattern was similar to that previously reported for in vivo fertilized oocytes placed in culture, where development also halted at the 4- to 8-cell stage. One-third of injected oocytes completed the second cleavage division, but only a single embryo reached the 8-cell stage. The success of ICSI in the tammar wallaby provided an opportunity to examine the influence of the mucoid coat that is deposited around oocytes passing through the oviduct after fertilization. The presence of a mucoid coat in tubal oocytes did not prevent fertilization by ICSI and the oocytes cleaved in vitro to a similar stage as follicular oocytes lacking a mucoid coat. Cell–zona and cell–cell adhesion occurred in embryos from follicular oocytes, suggesting that the mucoid coat is not essential for these processes. However, blastomeres were more closely apposed in embryos from tubal oocytes and cell–cell adhesion was more pronounced, indicating that the mucoid coat may be involved in maintaining the integrity of the conceptus during cleavage.


1973 ◽  
Vol 13 (2) ◽  
pp. 553-566 ◽  
Author(s):  
M. H. KAUFMAN

Mouse eggs were activated by treatment with hyaluronidase which removed the follicle cells, followed by culture in vitro, and examined at the first cleavage mitosis. Second polar body extrusion usually occurred and haploid parthenogenesis was initiated. Air-dried chromosome preparations were made between 11 and 15.5 h after activation. Out of the 308 eggs examined 74 had already progressed to the 2-cell stage; the remaining 234 at the 1-cell stage were examined in detail. All chromosome preparations of the first cleavage mitosis were classified into groups corresponding with the stages of prometaphase, metaphase (early or ‘pre-chromatid’, ‘chromatid’ and ‘late chromatid’) and anaphase. An indirect estimate was made of the duration of the first cleavage mitosis and of its component stages from the incidence of stages observed at different time intervals after activation. Similar eggs were also observed at 37 °C by time-lapse cine-photography and the interval between the disappearance of the pronucleus to the beginning of telophase of the first cleavage division was determined. The results of timing studies on the haploid eggs were compared with results obtained from similar observations on the first cleavage division of fertilized eggs which would of course normally be diploid. Artificially activated eggs with 2 pronuclei, resulting from second polar body suppression, were also examined, and serial chromosome preparations during mitosis showed that the 2 pronuclear chromosome groups unite on the first cleavage spindle and divide to give a hetero-zygous diploid 2-cell embryo.


2020 ◽  
Author(s):  
Daniela Londono Vasquez ◽  
Katherine Rodriguez-Lukey ◽  
Susanta K. Behura ◽  
Ahmed Z. Balboula

ABSTRACTDuring oocyte meiosis, migration of the spindle and its positioning must be tightly regulated to ensure elimination of the polar bodies and provide developmentally competent euploid eggs. Although the role of F-actin in regulating these critical processes has been studied extensively, little is known whether microtubules (MTs) participate in regulating these processes. Here, we characterize a pool of MTOCs in the oocyte that does not contribute to spindle assembly but instead remains free in the cytoplasm during metaphase I (metaphase cytoplasmic MTOCs; mcMTOCs). In contrast to spindle pole MTOCs, which primarily originate from the perinuclear region in prophase I, the mcMTOCs are found near the cortex of the oocyte. At nuclear envelope breakdown, they exhibit robust nucleation of MTs, which diminishes during polar body extrusion before returning robustly during metaphase II. The asymmetric positioning of the mcMTOCs provides the spindle with a MT-based anchor line to the cortex opposite the site of polar body extrusion. Depletion of mcMTOCs, by laser ablation, or manipulating their numbers, through autophagy inhibition, revealed that the mcMTOCs are required to regulate the timely migration and positioning of the spindle in meiosis. We discuss how forces exerted by F-actin in mediating movement of the spindle to the oocyte cortex are balanced by MT-mediated forces from the mcMTOCs to ensure spindle positioning and timely spindle migration.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Dalileh Nabi ◽  
Hauke Drechsler ◽  
Johannes Pschirer ◽  
Franz Korn ◽  
Nadine Schuler ◽  
...  

AbstractProper chromosome segregation is essential to avoid aneuploidy, yet this process fails with increasing age in mammalian oocytes. Here we report a role for the scarcely described protein CENP-V in oocyte spindle formation and chromosome segregation. We show that depending on the oocyte maturation state, CENP-V localizes to centromeres, to microtubule organizing centers, and to spindle microtubules. We find that Cenp-V−/− oocytes feature severe deficiencies, including metaphase I arrest, strongly reduced polar body extrusion, increased numbers of mis-aligned chromosomes and aneuploidy, multipolar spindles, unfocused spindle poles and loss of kinetochore spindle fibres. We also show that CENP-V protein binds, diffuses along, and bundles microtubules in vitro. The spindle assembly checkpoint arrests about half of metaphase I Cenp-V−/− oocytes from young adults only. This finding suggests checkpoint weakening in ageing oocytes, which mature despite carrying mis-aligned chromosomes. Thus, CENP-V is a microtubule bundling protein crucial to faithful oocyte meiosis, and Cenp-V−/− oocytes reveal age-dependent weakening of the spindle assembly checkpoint.


Zygote ◽  
2012 ◽  
Vol 22 (1) ◽  
pp. 10-17 ◽  
Author(s):  
Dušan Fabian ◽  
Štefan Čikoš ◽  
Pavol Rehák ◽  
Juraj Koppel

SummaryThe extrusion and elimination of unnecessary gametic/embryonic material is one of the key events that determines the success of further development in all living organisms. Oocytes produce the first polar body to fulfill the maturation process just before ovulation, and release the second polar body immediately after fertilization. The aim of this study was to compile a physiological overview of elimination of polar bodies during early preimplantation development in mice. Our results show that three-quarters of the first polar bodies were lost even at the zygotic stage; the 4-cell stage embryos contained only one (second) polar body, and the elimination of second polar bodies proceeded continuously during later development. Both first and second polar bodies showed several typical features of apoptosis: phosphatidylserine redistribution (observed for the first time in the first polar body), specific DNA degradation, condensed nuclear morphology, and inability to exclude cationic dye from the nucleus during the terminal stage of the apoptotic process. Caspase-3 activity was recorded only in the second polar body. From the morphological point of view, mouse polar bodies acted very similarly to damaged embryonic cells which have lost contact with their neighboring blastomeres. In conclusion, polar bodies possess all the molecular equipment necessary for triggering and executing an active suicide process. Furthermore, similarly as in dying embryonic cells, stressing external conditions (culture in vitro) might accelerate and increase the incidence of apoptotic elimination of the polar bodies in embryos.


2019 ◽  
Author(s):  
Di Xie ◽  
Juan Zhang ◽  
JinLi Ding ◽  
Jing Yang ◽  
Yan Zhang

Background. OLA1 is a member of the GTPase protein family, unlike other members, it can bind and hydrolyze ATP more efficiently than GTP. OLA1 participates in cell proliferation, oxidative response and tumorigenesis. However, whether OLA1 is also required for oocyte meiosis is still unknown. Methods. In this study, the localization, expression, and functions of OLA1 in the mouse oocyte meiosis were examined. Immunofluorescent and confocal microscopy were used to explore the location pattern of OLA1 in the mouse oocyte. Moreover, nocodazole treatment was used to confirm the spindle-like location of OLA1 during mouse meiosis. Western blot was used to explore the expression pattern of OLA1 in the mouse oocyte. Microinjection of siRNA was used to explore the OLA1 functions in the mouse oocyte meiosis. In addition, chromosome spreading was used to investigate the spindle assembly checkpoint (SAC) activity. Results. Immunofluorescent staining showed that OLA1 evenly distributed in the cytoplasm at germinal vesicle (GV) stage. After meiosis resumption (GVBD), OLA1 co-localized with spindles, which was further identified by nocodazole treatment experiments. Knockdown of OLA1 impaired the germinal vesicle breakdown progression and finally resulted in a lower polar body extrusion rate. Immunofluorescence analysis indicated that knockdown of OLA1 led to abnormal spindle assembly, which was evidenced by multipolar spindles in OLA1-RNAi-oocytes. After 6 h post-GVBD in culture, an increased proportion of oocyte which has precociously entered into anaphase/telephase I (A/TI) was observed in OLA1-knockdown oocytes, suggesting that loss of OLA1 resulted in the premature segregation of homologous chromosomes. In addition, the chromosome spread analysis suggested that OLA1 knockdown induced premature anaphase onset was due to the precocious inactivation of SAC. Taken together, we concluded that OLA1 plays important role in GVBD, spindle assembly and SAC activation maintenance in oocyte meiosis.


Sign in / Sign up

Export Citation Format

Share Document