scholarly journals Many roads to symmetry breaking: molecular mechanisms and theoretical models of yeast cell polarity

2017 ◽  
Vol 28 (3) ◽  
pp. 370-380 ◽  
Author(s):  
Andrew B. Goryachev ◽  
Marcin Leda

Mathematical modeling has been instrumental in identifying common principles of cell polarity across diverse systems. These principles include positive feedback loops that are required to destabilize a spatially uniform state of the cell. The conserved small G-protein Cdc42 is a master regulator of eukaryotic cellular polarization. Here we discuss recent developments in studies of Cdc42 polarization in budding and fission yeasts and demonstrate that models describing symmetry-breaking polarization can be classified into six minimal classes based on the structure of positive feedback loops that activate and localize Cdc42. Owing to their generic system-independent nature, these model classes are also likely to be relevant for the G-protein–based symmetry-breaking systems of higher eukaryotes. We review experimental evidence pro et contra different theoretically plausible models and conclude that several parallel and non–mutually exclusive mechanisms are likely involved in cellular polarization of yeasts. This potential redundancy needs to be taken into consideration when interpreting the results of recent cell-rewiring studies.

2013 ◽  
Vol 4 (1) ◽  
Author(s):  
Tina Freisinger ◽  
Ben Klünder ◽  
Jared Johnson ◽  
Nikola Müller ◽  
Garwin Pichler ◽  
...  

2012 ◽  
Vol 23 (10) ◽  
pp. 1998-2013 ◽  
Author(s):  
Natasha S. Savage ◽  
Anita T. Layton ◽  
Daniel J. Lew

The establishment of cell polarity involves positive-feedback mechanisms that concentrate polarity regulators, including the conserved GTPase Cdc42p, at the “front” of the polarized cell. Previous studies in yeast suggested the presence of two parallel positive-feedback loops, one operating as a diffusion-based system, and the other involving actin-directed trafficking of Cdc42p on vesicles. F-actin (and hence directed vesicle traffic) speeds fluorescence recovery of Cdc42p after photobleaching, suggesting that vesicle traffic of Cdc42p contributes to polarization. We present a mathematical modeling framework that combines previously developed mechanistic reaction-diffusion and vesicle-trafficking models. Surprisingly, the combined model recapitulated the observed effect of vesicle traffic on Cdc42p dynamics even when the vesicles did not carry significant amounts of Cdc42p. Vesicle traffic reduced the concentration of Cdc42p at the front, so that fluorescence recovery mediated by Cdc42p flux from the cytoplasm took less time to replenish the bleached pool. Simulations in which Cdc42p was concentrated into vesicles or depleted from vesicles yielded almost identical predictions, because Cdc42p flux from the cytoplasm was dominant. These findings indicate that vesicle-mediated delivery of Cdc42p is not required to explain the observed Cdc42p dynamics, and raise the question of whether such Cdc42p traffic actually contributes to polarity establishment.


2013 ◽  
Vol 368 (1629) ◽  
pp. 20130010 ◽  
Author(s):  
Fumio Motegi ◽  
Geraldine Seydoux

To become polarized, cells must first ‘break symmetry’. Symmetry breaking is the process by which an unpolarized, symmetric cell develops a singularity, often at the cell periphery, that is used to develop a polarity axis. The Caenorhabditis elegans zygote breaks symmetry under the influence of the sperm-donated centrosome, which causes the PAR polarity regulators to sort into distinct anterior and posterior cortical domains. Modelling analyses have shown that cortical flows induced by the centrosome combined with antagonism between anterior and posterior PARs (mutual exclusion) are sufficient, in principle, to break symmetry, provided that anterior and posterior PAR activities are precisely balanced. Experimental evidence indicates, however, that the system is surprisingly robust to changes in cortical flows, mutual exclusion and PAR balance. We suggest that this robustness derives from redundant symmetry-breaking inputs that engage two positive feedback loops mediated by the anterior and posterior PAR proteins. In particular, the PAR-2 feedback loop stabilizes the polarized state by creating a domain where posterior PARs are immune to exclusion by anterior PARs. The two feedback loops in the PAR network share characteristics with the two feedback loops in the Cdc42 polarization network of Saccharomyces cerevisiae .


2020 ◽  
Vol 48 (3) ◽  
pp. 1019-1034 ◽  
Author(s):  
Rachel M. Woodhouse ◽  
Alyson Ashe

Gene regulatory information can be inherited between generations in a phenomenon termed transgenerational epigenetic inheritance (TEI). While examples of TEI in many animals accumulate, the nematode Caenorhabditis elegans has proven particularly useful in investigating the underlying molecular mechanisms of this phenomenon. In C. elegans and other animals, the modification of histone proteins has emerged as a potential carrier and effector of transgenerational epigenetic information. In this review, we explore the contribution of histone modifications to TEI in C. elegans. We describe the role of repressive histone marks, histone methyltransferases, and associated chromatin factors in heritable gene silencing, and discuss recent developments and unanswered questions in how these factors integrate with other known TEI mechanisms. We also review the transgenerational effects of the manipulation of histone modifications on germline health and longevity.


2021 ◽  
Vol 7 (22) ◽  
pp. eabg3362
Author(s):  
Hamidreza Shaye ◽  
Benjamin Stauch ◽  
Cornelius Gati ◽  
Vadim Cherezov

Metabotropic γ-aminobutyric acid G protein–coupled receptors (GABAB) represent one of the two main types of inhibitory neurotransmitter receptors in the brain. These receptors act both pre- and postsynaptically by modulating the transmission of neuronal signals and are involved in a range of neurological diseases, from alcohol addiction to epilepsy. A series of recent cryo-EM studies revealed critical details of the activation mechanism of GABAB. Structures are now available for the receptor bound to ligands with different modes of action, including antagonists, agonists, and positive allosteric modulators, and captured in different conformational states from the inactive apo to the fully active state bound to a G protein. These discoveries provide comprehensive insights into the activation of the GABAB receptor, which not only broaden our understanding of its structure, pharmacology, and physiological effects but also will ultimately facilitate the discovery of new therapeutic drugs and neuromodulators.


2021 ◽  
Vol 22 (15) ◽  
pp. 8338
Author(s):  
Asad Jan ◽  
Nádia Pereira Gonçalves ◽  
Christian Bjerggaard Vaegter ◽  
Poul Henning Jensen ◽  
Nelson Ferreira

The pathological aggregation of the presynaptic protein α-synuclein (α-syn) and propagation through synaptically coupled neuroanatomical tracts is increasingly thought to underlie the pathophysiological progression of Parkinson’s disease (PD) and related synucleinopathies. Although the precise molecular mechanisms responsible for the spreading of pathological α-syn accumulation in the CNS are not fully understood, growing evidence suggests that de novo α-syn misfolding and/or neuronal internalization of aggregated α-syn facilitates conformational templating of endogenous α-syn monomers in a mechanism reminiscent of prions. A refined understanding of the biochemical and cellular factors mediating the pathological neuron-to-neuron propagation of misfolded α-syn will potentially elucidate the etiology of PD and unravel novel targets for therapeutic intervention. Here, we discuss recent developments on the hypothesis regarding trans-synaptic propagation of α-syn pathology in the context of neuronal vulnerability and highlight the potential utility of novel experimental models of synucleinopathies.


2020 ◽  
Vol 401 (6-7) ◽  
pp. 793-809
Author(s):  
Naama Zung ◽  
Maya Schuldiner

AbstractContact sites, areas where two organelles are held in close proximity through the action of molecular tethers, enable non-vesicular communication between compartments. Mitochondria have been center stage in the contact site field since the discovery of the first contact between mitochondria and the endoplasmic reticulum (ER) over 60 years ago. However, only now, in the last decade, has there been a burst of discoveries regarding contact site biology in general and mitochondrial contacts specifically. The number and types of characterized contacts increased dramatically, new molecular mechanisms enabling contact formation were discovered, additional unexpected functions for contacts were shown, and their roles in cellular and organismal physiology were emphasized. Here, we focus on mitochondria as we highlight the most recent developments, future goals and unresolved questions in the field.


PLoS ONE ◽  
2008 ◽  
Vol 3 (8) ◽  
pp. e3078 ◽  
Author(s):  
Caroline Conte ◽  
Elodie Riant ◽  
Céline Toutain ◽  
Françoise Pujol ◽  
Jean-François Arnal ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document