scholarly journals How the cell cycle clock ticks

2019 ◽  
Vol 30 (2) ◽  
pp. 169-172 ◽  
Author(s):  
Mihkel Örd ◽  
Mart Loog

Eukaryotic cell division has been studied thoroughly and is understood in great mechanistic detail. Paradoxically, however, we lack an understanding of its core control process, in which the master regulator of the cell cycle, cyclin-dependent kinase (CDK), temporally coordinates an array of complex molecular events. The core elements of the CDK control system are conserved in eukaryotic cells, which contain multiple cyclin–CDK forms that have poorly defined and partially overlapping responsibilities in the cell cycle. However, a single CDK can drive all events of cell division in both mammalian and yeast cells, and in fission yeast a single mitotic cyclin can drive the cell cycle without major problems. But how can the same CDK induce different events when activated at different times during the cell cycle? This question, which has bewildered cell cycle researchers for decades, now has a sufficiently clear mechanistic answer. This Perspective aims to provide a synthesis of recent data to facilitate a better understanding of this central cellular control system.

Author(s):  
Heidi M. Blank ◽  
Ophelia Papoulas ◽  
Nairita Maitra ◽  
Riddhiman Garge ◽  
Brian K. Kennedy ◽  
...  

ABSTRACTEstablishing the pattern of abundance of molecules of interest during cell division has been a long-standing goal of cell cycle studies. In several systems, including the budding yeast Saccharomyces cerevisiae, cell cycle-dependent changes in the transcriptome are well studied. In contrast, few studies queried the proteome during cell division, and they are often plagued by low agreement with each other and with previous transcriptomic datasets. There is also little information about dynamic changes in the levels of metabolites and lipids in the cell cycle. Here, for the first time in any system, we present experiment-matched datasets of the levels of RNAs, proteins, metabolites, and lipids from un-arrested, growing, and synchronously dividing yeast cells. Overall, transcript and protein levels were correlated, but specific processes that appeared to change at the RNA level (e.g., ribosome biogenesis), did not do so at the protein level, and vice versa. We also found no significant changes in codon usage or the ribosome content during the cell cycle. We describe an unexpected mitotic peak in the abundance of ergosterol and thiamine biosynthesis enzymes. Although the levels of several metabolites changed in the cell cycle, by far the most significant changes were in the lipid repertoire, with phospholipids and triglycerides peaking strongly late in the cell cycle. Our findings provide an integrated view of the abundance of biomolecules in the eukaryotic cell cycle and point to a coordinate mitotic control of lipid metabolism.


2020 ◽  
Vol 31 (10) ◽  
pp. 1069-1084 ◽  
Author(s):  
Heidi M. Blank ◽  
Ophelia Papoulas ◽  
Nairita Maitra ◽  
Riddhiman Garge ◽  
Brian K. Kennedy ◽  
...  

In several systems, including budding yeast, cell cycle-dependent changes in the transcriptome are well studied. In contrast, few studies queried the proteome during cell division. There is also little information about dynamic changes in metabolites and lipids in the cell cycle. Here, the authors present such information for dividing yeast cells.


2005 ◽  
Vol 16 (5) ◽  
pp. 2129-2138 ◽  
Author(s):  
Frederick R. Cross ◽  
Lea Schroeder ◽  
Martin Kruse ◽  
Katherine C. Chen

Regulation of cyclin abundance is central to eukaryotic cell cycle control. Strong overexpression of mitotic cyclins is known to lock the system in mitosis, but the quantitative behavior of the control system as this threshold is approached has only been characterized in the in vitro Xenopus extract system. Here, we quantitate the threshold for mitotic block in budding yeast caused by constitutive overexpression of the mitotic cyclin Clb2. Near this threshold, the system displays marked loss of robustness, in that loss or even heterozygosity for some regulators becomes deleterious or lethal, even though complete loss of these regulators is tolerated at normal cyclin expression levels. Recently, we presented a quantitative kinetic model of the budding yeast cell cycle. Here, we use this model to generate biochemical predictions for Clb2 levels, asynchronous as well as through the cell cycle, as the Clb2 overexpression threshold is approached. The model predictions compare well with biochemical data, even though no data of this type were available during model generation. The loss of robustness of the Clb2 overexpressing system is also predicted by the model. These results provide strong confirmation of the model's predictive ability.


1978 ◽  
Vol 77 (3) ◽  
pp. 627-637 ◽  
Author(s):  
LH Hartwell

A novel view of the eukaryotic cell cycle is taking form as genetic strategies borrowed from investigations of microbial gene regulation and bacteriophage morphogenesis are being applied to the process of cell division. It is a genetic construct in which mutational lesions identify the primary events, thermolabile gene products reveal temporal order, mutant phenotypes yield pathways of causality, and regulatory events are localized within sequences of gene controlled steps.


2011 ◽  
Vol 366 (1584) ◽  
pp. 3572-3583 ◽  
Author(s):  
Frank Uhlmann ◽  
Céline Bouchoux ◽  
Sandra López-Avilés

The eukaryotic cell division cycle encompasses an ordered series of events. Chromosomal DNA is replicated during S phase of the cell cycle before being distributed to daughter cells in mitosis. Both S phase and mitosis in turn consist of an intricately ordered sequence of molecular events. How cell cycle ordering is achieved, to promote healthy cell proliferation and avert insults on genomic integrity, has been a theme of Paul Nurse's research. To explain a key aspect of cell cycle ordering, sequential S phase and mitosis, Stern & Nurse proposed ‘A quantitative model for cdc2 control of S phase and mitosis in fission yeast’. In this model, S phase and mitosis are ordered by their dependence on increasing levels of cyclin-dependent kinase (Cdk) activity. Alternative mechanisms for ordering have been proposed that rely on checkpoint controls or on sequential waves of cyclins with distinct substrate specificities. Here, we review these ideas in the light of experimental evidence that has meanwhile accumulated. Quantitative Cdk control emerges as the basis for cell cycle ordering, fine-tuned by cyclin specificity and checkpoints. We propose a molecular explanation for quantitative Cdk control, based on thresholds imposed by Cdk-counteracting phosphatases, and discuss its implications.


2020 ◽  
Vol 31 (26) ◽  
pp. 2871-2873
Author(s):  
Paul Nurse

Cell cycle mutants in the budding and fission yeasts have played critical roles in working out how the eukaryotic cell cycle operates and is controlled. The starting point was Lee Hartwell’s 1970s landmark papers describing the first cell division cycle (CDC) mutants in budding yeast. These mutants were blocked at different cell cycle stages and so were unable to complete the cell cycle, thus defining genes necessary for successful cell division. Inspired by Hartwell’s work, I isolated CDC mutants in the very distantly related fission yeast. This started a program of searches for mutants in fission yeast that revealed a range of phenotypes informative about eukaryotic cell cycle control. These included mutants defining genes that were rate-limiting for the onset of mitosis and of the S-phase, that were responsible for there being only one S-phase in each cell cycle, and that ensured that mitosis only took place when S-phase was properly completed. This is a brief account of the discovery of these mutants and how they led to the identification of cyclin-dependent kinases as core to these cell cycle controls.


2010 ◽  
Vol 30 (4) ◽  
pp. 243-255 ◽  
Author(s):  
Randy Suryadinata ◽  
Martin Sadowski ◽  
Boris Sarcevic

The eukaryotic cell cycle is a fundamental evolutionarily conserved process that regulates cell division from simple unicellular organisms, such as yeast, through to higher multicellular organisms, such as humans. The cell cycle comprises several phases, including the S-phase (DNA synthesis phase) and M-phase (mitotic phase). During S-phase, the genetic material is replicated, and is then segregated into two identical daughter cells following mitotic M-phase and cytokinesis. The S- and M-phases are separated by two gap phases (G1 and G2) that govern the readiness of cells to enter S- or M-phase. Genetic and biochemical studies demonstrate that cell division in eukaryotes is mediated by CDKs (cyclin-dependent kinases). Active CDKs comprise a protein kinase subunit whose catalytic activity is dependent on association with a regulatory cyclin subunit. Cell-cycle-stage-dependent accumulation and proteolytic degradation of different cyclin subunits regulates their association with CDKs to control different stages of cell division. CDKs promote cell cycle progression by phosphorylating critical downstream substrates to alter their activity. Here, we will review some of the well-characterized CDK substrates to provide mechanistic insights into how these kinases control different stages of cell division.


1974 ◽  
Vol 16 (3) ◽  
pp. 593-598 ◽  
Author(s):  
Byron F. Johnson ◽  
Calvin Lu ◽  
Sidney Brandwein

To cultures of Schizosaccharomyces pombe, 2-deoxyglucose (2DG) was added, either as 7 μg/ml during inoculation of the cultures (low dosage), or as 250 μg/ml during the log phase (high dosage). Samples were removed from the cultures, and lysing and non-lysing cells were measured and tabulated. Addition of the high dosage was followed immediately by lysis, with over 85% of the lysing cells found in cytolysis at their primary growing ends Lysis ensued only at the beginning of the stationary phase in the low dosage experiments; 64% of the affected cells lysed at their cell plates. Cells lysing at their primary ends (high dose experiments) were shorter than the controls; cells lysing at their cell plates (low dose experiments) were longer than the controls. The cell division process of the last cell cycle completed in the culture is unusual in its susceptibility to the low initial dose of 2DG, suggesting that cell division metabolism is fundamentally different from wall extension metabolism in the fission yeast.


2006 ◽  
Vol 6 (2) ◽  
pp. 182-197 ◽  
Author(s):  
Amy S. Gladfelter ◽  
Nicoleta Sustreanu ◽  
A. Katrin Hungerbuehler ◽  
Sylvia Voegeli ◽  
Virginie Galati ◽  
...  

ABSTRACT Regulated protein degradation is essential for eukaryotic cell cycle progression. The anaphase-promoting complex/cyclosome (APC/C) is responsible for the protein destruction required for the initiation of anaphase and the exit from mitosis, including the degradation of securin and B-type cyclins. We initiated a study of the APC/C in the multinucleated, filamentous ascomycete Ashbya gossypii to understand the mechanisms underlying the asynchronous mitosis observed in these cells. These experiments were motivated by previous work which demonstrated that the mitotic cyclin AgClb1/2p persists through anaphase, suggesting that the APC/C may not be required for the division cycle in A. gossypii. We have now found that the predicted APC/C components AgCdc23p and AgDoc1p and the targeting factors AgCdc20p and AgCdh1p are essential for growth and nuclear division. Mutants lacking any of these factors arrest as germlings with nuclei blocked in mitosis. A likely substrate of the APC/C is the securin homologue AgPds1p, which is present in all nuclei in hyphae except those in anaphase. The destruction box sequence of AgPds1p is required for this timed disappearance. To investigate how the APC/C may function to degrade AgPds1p in only the subset of anaphase nuclei, we localized components and targeting subunits of the APC/C. Remarkably, AgCdc23p, AgDoc1p, and AgCdc16p were found in all nuclei in all cell cycle stages, as were the APC/C targeting factors AgCdc20p and AgCdh1p. These data suggest that the AgAPC/C may be constitutively active across the cell cycle and that proteolysis in these multinucleated cells may be regulated at the level of substrates rather than by the APC/C itself.


mBio ◽  
2017 ◽  
Vol 8 (3) ◽  
Author(s):  
Jonathan A. Robbins ◽  
Sabrina Absalon ◽  
Vincent A. Streva ◽  
Jeffrey D. Dvorin

ABSTRACT All well-studied eukaryotic cell cycles are driven by cyclins, which activate cyclin-dependent kinases (CDKs), and these protein kinase complexes are viable drug targets. The regulatory control of the Plasmodium falciparum cell division cycle remains poorly understood, and the roles of the various CDKs and cyclins remain unclear. The P. falciparum genome contains multiple CDKs, but surprisingly, it does not contain any sequence-identifiable G1-, S-, or M-phase cyclins. We demonstrate that P. falciparum Cyc1 (PfCyc1) complements a G1 cyclin-depleted Saccharomyces cerevisiae strain and confirm that other identified malaria parasite cyclins do not complement this strain. PfCyc1, which has the highest sequence similarity to the conserved cyclin H, cannot complement a temperature-sensitive yeast cyclin H mutant. Coimmunoprecipitation of PfCyc1 from P. falciparum parasites identifies PfMAT1 and PfMRK as specific interaction partners and does not identify PfPK5 or other CDKs. We then generate an endogenous conditional allele of PfCyc1 in blood-stage P. falciparum using a destabilization domain (DD) approach and find that PfCyc1 is essential for blood-stage proliferation. PfCyc1 knockdown does not impede nuclear division, but it prevents proper cytokinesis. Thus, we demonstrate that PfCyc1 has a functional divergence from bioinformatic predictions, suggesting that the malaria parasite cell division cycle has evolved to use evolutionarily conserved proteins in functionally novel ways. IMPORTANCE Human infection by the eukaryotic parasite Plasmodium falciparum causes malaria. Most well-studied eukaryotic cell cycles are driven by cyclins, which activate cyclin-dependent kinases (CDKs) to promote essential cell division processes. Remarkably, there are no identifiable cyclins that are predicted to control the cell cycle in the malaria parasite genome. Thus, our knowledge regarding the basic mechanisms of the malaria parasite cell cycle remains unsatisfactory. We demonstrate that P. falciparum Cyc1 (PfCyc1), a transcriptional cyclin homolog, complements a cell cycle cyclin-deficient yeast strain but not a transcriptional cyclin-deficient strain. We show that PfCyc1 forms a complex in the parasite with PfMRK and the P. falciparum MAT1 homolog. PfCyc1 is essential and nonredundant in blood-stage P. falciparum. PfCyc1 knockdown causes a stage-specific arrest after nuclear division, demonstrating morphologically aberrant cytokinesis. This work demonstrates a conserved PfCyc1/PfMAT1/PfMRK complex in malaria and suggests that it functions as a schizont stage-specific regulator of the P. falciparum life cycle. IMPORTANCE Human infection by the eukaryotic parasite Plasmodium falciparum causes malaria. Most well-studied eukaryotic cell cycles are driven by cyclins, which activate cyclin-dependent kinases (CDKs) to promote essential cell division processes. Remarkably, there are no identifiable cyclins that are predicted to control the cell cycle in the malaria parasite genome. Thus, our knowledge regarding the basic mechanisms of the malaria parasite cell cycle remains unsatisfactory. We demonstrate that P. falciparum Cyc1 (PfCyc1), a transcriptional cyclin homolog, complements a cell cycle cyclin-deficient yeast strain but not a transcriptional cyclin-deficient strain. We show that PfCyc1 forms a complex in the parasite with PfMRK and the P. falciparum MAT1 homolog. PfCyc1 is essential and nonredundant in blood-stage P. falciparum. PfCyc1 knockdown causes a stage-specific arrest after nuclear division, demonstrating morphologically aberrant cytokinesis. This work demonstrates a conserved PfCyc1/PfMAT1/PfMRK complex in malaria and suggests that it functions as a schizont stage-specific regulator of the P. falciparum life cycle.


Sign in / Sign up

Export Citation Format

Share Document