scholarly journals Nek8445, a protein kinase required for microtubule regulation and cytokinesis in Giardia lamblia

2020 ◽  
Vol 31 (15) ◽  
pp. 1611-1622
Author(s):  
Kelly M. Hennessey ◽  
Germain C. M. Alas ◽  
Ilse Rogiers ◽  
Renyu Li ◽  
Ethan A. Merritt ◽  
...  

Here we study the role of Nek8445 in regulating cell division and microtubule array organization in Giardia. Depletion of Nek8445 results in 87% of cells being stalled or blocked in cytokinesis. Nek8445 regulates ventral disk organization, funis formation, axoneme exit, and cell shape, all of which contribute to the observed cytokinesis defects.

Antibiotics ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 274
Author(s):  
Jinglan Wang ◽  
Laura Alvarez ◽  
Silvia Bulgheresi ◽  
Felipe Cava ◽  
Tanneke den Blaauwen

Peptidoglycan (PG) is essential for bacterial survival and maintaining cell shape. The rod-shaped model bacterium Escherichia coli has a set of seven endopeptidases that remodel the PG during cell growth. The gamma proteobacterium Candidatus Thiosymbion oneisti is also rod-shaped and attaches to the cuticle of its nematode host by one pole. It widens and divides by longitudinal fission using the canonical proteins MreB and FtsZ. The PG layer of Ca. T. oneisti has an unusually high peptide cross-linkage of 67% but relatively short glycan chains with an average length of 12 disaccharides. Curiously, it has only two predicted endopeptidases, MepA and PBP4. Cellular localization of symbiont PBP4 by fluorescently labeled antibodies reveals its polar localization and its accumulation at the constriction sites, suggesting that PBP4 is involved in PG biosynthesis during septum formation. Isolated symbiont PBP4 protein shows a different selectivity for β-lactams compared to its homologue from E. coli. Bocillin-FL binding by PBP4 is activated by some β-lactams, suggesting the presence of an allosteric binding site. Overall, our data point to a role of PBP4 in PG cleavage during the longitudinal cell division and to a PG that might have been adapted to the symbiotic lifestyle.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Eun-Ah Park ◽  
Juri Kim ◽  
Mee Young Shin ◽  
Soon-Jung Park

Abstract Background Polo-like kinases (PLKs) are conserved serine/threonine kinases that regulate the cell cycle. To date, the role of Giardia lamblia PLK (GlPLK) in cells has not been studied. Here, we report our investigation on the function of GlPLK to provide insight into the role of this PKL in Giardia cell division, especially during cytokinesis and flagella formation. Methods To assess the function of GIPLK, Giardia trophozoites were treated with the PLK-specific inhibitor GW843286X (GW). Using a putative open reading frame for the PLK identified in the Giardia genomic database, we generated a transgenic Giardia expressing hemagglutinin (HA)-tagged GlPLK and used this transgenic for immunofluorescence assays (IFAs). GlPLK expression was knocked down using an anti-glplk morpholino to observe its effect on the number of nuclei number and length of flagella. Giardia cells ectopically expressing truncated GlPLKs, kinase domain + linker (GlPLK-KDL) or polo-box domains (GlPLK-PBD) were constructed for IFAs. Mutant GlPLKs at Lys51, Thr179 and Thr183 were generated by site-directed mutagenesis and then used for the kinase assay. To elucidate the role of phosphorylated GlPLK, the phosphorylation residues were mutated and expressed in Giardia trophozoites Results After incubating trophozoites with 5 μM GW, the percentage of cells with > 4 nuclei and longer caudal and anterior flagella increased. IFAs indicated that GlPLK was localized to basal bodies and flagella and was present at mitotic spindles in dividing cells. Morpholino-mediated GlPLK knockdown resulted in the same phenotypes as those observed in GW-treated cells. In contrast to Giardia expressing GlPLK-PBD, Giardia expressing GlPLK-KDL was defective in terms of GIPLK localization to mitotic spindles and had altered localization of the basal bodies in dividing cells. Kinase assays using mutant recombinant GlPLKs indicated that mutation at Lys51 or at both Thr179 and Thr183 resulted in loss of kinase activity. Giardia expressing these mutant GlPLKs also demonstrated defects in cell growth, cytokinesis and flagella formation. Conclusions These data indicate that GlPLK plays a role in Giardia cell division, especially during cytokinesis, and that it is also involved in flagella formation.


2018 ◽  
Vol 82 (5) ◽  
pp. 916-925
Author(s):  
Glaezel Angelique Torres-Barredo ◽  
Hotaka Atarashi ◽  
Akinobu Kajikawa ◽  
Aiko Hirata ◽  
Akihito Endo ◽  
...  

2019 ◽  
Author(s):  
Kelly M. Hennessey ◽  
Germain C.M. Alas ◽  
Ilse Rogiers ◽  
Renyu Li ◽  
Ethan A. Merritt ◽  
...  

AbstractGiardia has 198 Nek kinases whereas humans have only 11. Giardia has a complex microtubule cytoskeleton that includes eight flagella and several unique microtubule arrays that are utilized for parasite attachment and facilitation of rapid mitosis and cytokinesis. The need to regulate these structures may explain the parallel expansion of the number of Nek family kinases. Here we use live and fixed cell imaging to uncover the role of Nek8445 in regulating Giardia cell division. We demonstrate that Nek8445 localization is cell cycle regulated and this kinase has a role in regulating overall microtubule organization. Nek8445 depletion results in short flagella, aberrant ventral disc organization, loss of the funis, defective axoneme exit and altered cell shape. The axoneme exit defect is specific to the caudal axonemes, which exit from the posterior of the cell, and this defect correlates with rounding of the cell posterior and loss of the funis. Our findings implicate a role for the funis in establishing Giardia’s cell shape and guiding axoneme docking. On a broader scale our results support the emerging view that Nek family kinases have a general role in regulating microtubule organization.


2010 ◽  
Vol 48 (08) ◽  
Author(s):  
N Azoitei ◽  
GV Pusapati ◽  
A Kleger ◽  
C Brunner ◽  
F Genze ◽  
...  

2013 ◽  
Vol 51 (08) ◽  
Author(s):  
A Becher ◽  
A Staab ◽  
F Genze ◽  
S Bobrovich ◽  
N Azoitei ◽  
...  
Keyword(s):  

1986 ◽  
Vol 113 (1_Suppl) ◽  
pp. S63-S64
Author(s):  
A. K. MUKHOPADHYAY ◽  
H. G. BOHNET

Sign in / Sign up

Export Citation Format

Share Document