scholarly journals We need to address ableism in science

2021 ◽  
Vol 32 (7) ◽  
pp. 507-510
Author(s):  
Raven J. Peterson

In science, technology, engineering, and mathematics (STEM) fields, disabled people remain a significantly underrepresented part of the workforce. Recent data suggests that about 20% of undergraduates in the United States have disabilities, but representation in STEM fields is consistently lower than in the general population. Of those earning STEM degrees, only about 10% of undergraduates, 6% of graduate students, and 2% of doctoral students identify as disabled. This suggests that STEM fields have difficulty recruiting and retaining disabled students, which ultimately hurts the field, because disabled scientists bring unique problem-solving perspectives and input. This essay briefly explores the ways in which ableism—prejudice against disabled people based on the assumption that they are “less than” their nondisabled peers—in research contributes to the exclusion of disabled scientists and suggests ways in which the scientific community can improve accessibility and promote the inclusion of disabled scientists in academic science.

10.28945/2302 ◽  
2015 ◽  
Vol 10 ◽  
pp. 343-363 ◽  
Author(s):  
Simy Joy ◽  
Xiang Fen Liang ◽  
Diana Bilimoria ◽  
Susan Perry

Unlike the doctoral programs in places where students are paired with advisors at the time of admission itself, most US programs require the students to choose their advisors, and the advisors to formally accept the students as advisees. Little research has been done to understand how students and faculty approach this mutual selection and pairing process. This paper examines this process in STEM departments (Science, Technology, Engineering and Mathematics), with specific focus on factors influencing the decisions. Based on focus groups and interviews of doctoral students and faculty from STEM departments in an American university, we identify criteria applied by students and faculty in making their choices. Students were found to assess faculty on available funding, area of research, personality, ability to graduate students fast, and career prospects for students, and faculty to assess students on their qualifications/credentials and perceived ability to contribute to research. We also found that this mutual assessment was not objective, but influenced by perceptions associated with faculty gender and career stage, and student nationality. In the end, whether students and faculty were actually paired with persons of their choice depended on departmental factors including prevalent pairing practices, restrictions on student numbers per faculty, and reward structure. We discuss implications of the findings for research and practice.


2021 ◽  
pp. 194855062110350
Author(s):  
Jasmine B. Norman ◽  
Melissa A. Fuesting ◽  
Danielle M. Geerling ◽  
Jacqueline M. Chen ◽  
Shelly L. Gable ◽  
...  

Four studies examine the faculty–student relationship as a mechanism through which students ascertain their place in science, technology, engineering, and mathematics (STEM) fields. Studies 1 and 2 use experimental methods to demonstrate STEM faculty who behave communally, relative to independently, increase undergraduates’ belonging and interest in STEM roles through anticipation of greater role-specific support (i.e., support that emphasizes guiding students through structures and activities of field-specific roles). Study 3 then examined the consequences of role-specific support for undergraduates’ belonging and interest in STEM. Students anticipated more belonging and interest in STEM roles when faculty provided high levels of role-specific support. Finally, STEM doctoral students’ perception of role-specific support from faculty related to their belonging and future identification in STEM fields (Study 4). Taken together, these studies demonstrate the importance of students’ construals of role-specific support from faculty, and how faculty behavior signals role-specific support, with benefits for student involvement in STEM.


2021 ◽  
pp. 073112142110286
Author(s):  
Jennifer Ashlock ◽  
Miodrag Stojnic ◽  
Zeynep Tufekci

Cultural processes can reduce self-selection into math and science fields, but it remains unclear how confidence in computer science develops, where women are currently the least represented in STEM (science, technology, engineering, and mathematics). Few studies evaluate both computer skills and self-assessments of skill. In this paper, we evaluate gender differences in efficacy across three STEM fields using a data set of middle schoolers, a particularly consequential period for academic pathways. Even though girls and boys do not significantly differ in terms of math grades and have similar levels of computer skill, the gender gap in computer efficacy is twice as large as the gap for math. We offer support for disaggregation of STEM fields, so the unique meaning making around computing can be addressed.


2020 ◽  
Vol 1 (3) ◽  
pp. 1283-1297
Author(s):  
Mike Thelwall ◽  
Pardeep Sud

Ongoing problems attracting women into many Science, Technology, Engineering and Mathematics (STEM) subjects have many potential explanations. This article investigates whether the possible undercitation of women associates with lower proportions of, or increases in, women in a subject. It uses six million articles published in 1996–2012 across up to 331 fields in six mainly English-speaking countries: Australia, Canada, Ireland, New Zealand, the United Kingdom and the United States. The proportion of female first- and last-authored articles in each year was calculated and 4,968 regressions were run to detect first-author gender advantages in field normalized article citations. The proportion of female first authors in each field correlated highly between countries and the female first-author citation advantages derived from the regressions correlated moderately to strongly between countries, so both are relatively field specific. There was a weak tendency in the United States and New Zealand for female citation advantages to be stronger in fields with fewer women, after excluding small fields, but there was no other association evidence. There was no evidence of female citation advantages or disadvantages to be a cause or effect of changes in the proportions of women in a field for any country. Inappropriate uses of career-level citations are a likelier source of gender inequities.


Author(s):  
Pamela M. Leggett-Robinson ◽  
Brandi Campbell Villa

In 1976, the challenges faced by women of color who pursue careers in science, technology, engineering, and mathematics (STEM) fields were first brought to national attention. Forty-two years later, the authors re-examine the challenges, barriers, and successes of women of color in STEM higher education. This chapter examines the landscape of the STEM professoriate through a literature review (journals, trade magazines, theses, and dissertations) and reflective shorts and quotes from women of color navigating the STEM professoriate. The literature review spans a 10-year period (2008-2018). Both the review and the reflections focus on the areas of STEM belonging, self-presentation, stereotyping, institutional racism, discrimination, and tokenism as challenges faced by women of color in the STEM professoriate. Additionally, mechanisms used by women of color to navigate and succeed despite these barriers, such as mentoring, are explored throughout.


Author(s):  
Ursula Thomas ◽  
Jill Drake

Understanding why women are underrepresented in various Science, Technology, Engineering, and Mathematics fields remains an important area of research. In the United States and in many industrialized nations around the world, STEM professions remain male dominated. Explanations for why women are not participating STEM professions are many and diverse. The Ecology Systems Theory (EST) presents a lens through which the causes for the continued underrepresentation of women in STEM fields may be examined. EST is widely accepted theoretical framework for exploring the influences that contribute to the development of an individual. The study presented in this chapter explored the familial, educational, economic, and social experiences of 125 female participants working in a STEM field. Findings suggest there are influences at specific levels in EST that can and do affect the educational and career aspirations of women in relationship to STEM fields.


2019 ◽  
Vol 18 (3) ◽  
pp. mr3
Author(s):  
Daniel L. Reinholz ◽  
Tessa C. Andrews

There has been a recent push for greater collaboration across the science, technology, engineering, and mathematics (STEM) fields in discipline-based education research (DBER). The DBER fields are unique in that they require a deep understanding of both disciplinary content and educational research. DBER scholars are generally trained and hold professional positions in discipline-specific departments. The professional societies with which DBER scholars are most closely aligned are also often discipline specific. This frequently results in DBER researchers working in silos. At the same time, there are many cross-cutting issues across DBER research in higher education, and DBER researchers across disciplines can benefit greatly from cross-disciplinary collaborations. This report describes the Breaking Down Silos working meeting, which was a short, focused meeting intentionally designed to foster such collaborations. The focus of Breaking Down Silos was institutional transformation in STEM education, but we describe the ways the overall meeting design and structure could be a useful model for fostering cross-­disciplinary collaborations around other research priorities of the DBER community. We describe our approach to meeting recruitment, premeeting work, and inclusive meeting design. We also highlight early outcomes from our perspective and the perspectives of the meeting participants.


2018 ◽  
Vol 19 (4) ◽  
pp. 437-451 ◽  
Author(s):  
Blanca E. Rincón

Using student-level data, this study explores the relationship between Latinx student representation in science, technology, engineering and mathematics (STEM) and student retention. Results revealed that a 1% increase in cohort-level Latinx student representation in STEM subfields is associated with a decrease in student departures from the university, but not STEM. Furthermore, Latinx STEM students may be more responsive to changes in the representation of their cohorts compared with increases in diversity for upper-division undergraduate or graduate students.


2020 ◽  
pp. 153819272091836
Author(s):  
Elsa Gonzalez ◽  
Cecilia Contreras Aguirre ◽  
Joenie Myers

This study examined the success and persistence of Latina students in the complex environment of science, technology, engineering, and mathematics (STEM) fields at a Tier 1 Research higher education institution in Texas. For this qualitative study, 10 Latina students pursuing STEM majors were interviewed within a framework focusing on Greene’s resilience theory. Results of this study suggest a strong likelihood for Latinas to succeed in STEM fields because of their development of resilience.


Sign in / Sign up

Export Citation Format

Share Document