scholarly journals The protective effects of HGF against apoptosis in vascular endothelial cells caused by peripheral vascular injury

2018 ◽  
Vol 50 (7) ◽  
pp. 701-708 ◽  
Author(s):  
Wu Zhong ◽  
Yu Zhao ◽  
Ye Tian ◽  
Muhu Chen ◽  
Xue Lai
2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Xingcai Zhang ◽  
Tingting Wang ◽  
Ping Gui ◽  
Chengye Yao ◽  
Wei Sun ◽  
...  

Tight Junctions (TJ) are important components of paracellular pathways, and their destruction enhances vascular permeability. Resolvin D1 (RvD1) is a novel lipid mediator that has treatment effects on inflammatory diseases, but its effect on inflammation induced increase in vascular permeability is unclear. To understand whether RvD1 counteracts the lipopolysaccharide (LPS) induced increase in vascular cell permeability, we investigated the effects of RvD1 on endothelial barrier permeability and tight junction reorganization and expression in the presence or absence of LPS stimulation in cultured Human Vascular Endothelial Cells (HUVECs). Our results showed that RvD1 decreased LPS-induced increased in cellular permeability and inhibited the LPS-induced redistribution of zo-1, occludin, and F-actin in HUVECs. Moreover, RvD1 attenuated the expression of IκBαin LPS-induced HUVECs. The NF-κB inhibitor PDTC enhanced the protective effects of RvD1 on restoration of occludin rather than zo-1 expression in LPS-stimulated HUVECs. By contrast, the ERK1/2 inhibitor PD98059 had no effect on LPS-induced alterations in zo-1 and occludin protein expressions in HUVECs. Our data indicate that RvD1 protects against impairment of endothelial barrier function induced by LPS through upregulating the expression of TJ proteins in HUVECs, which involves the IκBαpathway but not the ERK1/2 signaling.


2017 ◽  
Vol 2017 ◽  
pp. 1-8 ◽  
Author(s):  
Weijin Zhang ◽  
Qiaobing Huang ◽  
Zhenhua Zeng ◽  
Jie Wu ◽  
Yaoyuan Zhang ◽  
...  

The vascular endothelium is a layer of cells lining the inner surface of vessels, serving as a barrier that mediates microenvironment homeostasis. Deterioration of either the structure or function of endothelial cells (ECs) results in a variety of cardiovascular diseases. Previous studies have shown that reactive oxygen species (ROS) is a key factor that contributes to the impairment of ECs and the subsequent endothelial dysfunction. The longevity regulator Sirt1 is a NAD+-dependent deacetylase that has a potential antioxidative stress activity in vascular ECs. The mechanisms underlying the protective effects involve Sirt1/FOXOs, Sirt1/NF-κB, Sirt1/NOX, Sirt1/SOD, and Sirt1/eNOs pathways. In this review, we summarize the most recent reports in this field to recapitulate the potent mechanisms involving the protective role of Sirt1 in oxidative stress and to highlight the beneficial effects of Sirt1 on cardiovascular functions.


Antioxidants ◽  
2020 ◽  
Vol 9 (8) ◽  
pp. 712 ◽  
Author(s):  
Ying-Jung Hsu ◽  
Chao-Wen Lin ◽  
Sheng-Li Cho ◽  
Wei-Shiung Yang ◽  
Chung-May Yang ◽  
...  

Diabetic retinopathy (DR) is an important microvascular complication of diabetes and one of the leading causes of blindness in developed countries. Two large clinical studies showed that fenofibrate, a peroxisome proliferator-activated receptor type α (PPAR-α) agonist, reduces DR progression. We evaluated the protective effects of fenofibrate on retinal/choroidal vascular endothelial cells under oxidative stress and investigated the underlying mechanisms using RF/6A cells as the model system and paraquat (PQ) to induce oxidative stress. Pretreatment with fenofibrate suppressed reactive oxygen species (ROS) production, decreased cellular apoptosis, diminished the changes in the mitochondrial membrane potential, increased the mRNA levels of peroxiredoxin (Prx), thioredoxins (Trxs), B-cell lymphoma 2 (Bcl-2), and Bcl-xl, and reduced the level of B-cell lymphoma 2-associated X protein (Bax) in PQ-stimulated RF/6A cells. Western blot analysis revealed that fenofibrate repressed apoptosis through cytosolic and mitochondrial apoptosis signal-regulated kinase-1 (Ask)-Trx-related signaling pathways, including c-Jun amino-terminal kinase (JNK) phosphorylation, cytochrome c release, caspase 3 activation, and poly (ADP-ribose) polymerase-1 (PARP-1) cleavage. These protective effects of fenofibrate on RF/6A cells may be attributable to its anti-oxidative ability. Our research suggests that fenofibrate could serve as an effective adjunct therapy for ocular oxidative stress-related disorders, such as DR.


Author(s):  
Yuan Gao ◽  
Hidenori Wake ◽  
Keyue Liu ◽  
Kiyoshi Teshigawara ◽  
Shuji Mori ◽  
...  

Author(s):  
Chang-Wen Ku ◽  
Tsung-Jung Ho ◽  
Chih-Yang Huang ◽  
Pei-Ming Chu ◽  
Hsiu-Chung Ou ◽  
...  

A well-known medicinal mushroom in the field of traditional Chinese medicine, Cordyceps sinensis, is a rare natural-occurring entomopathogenic fungus, and it typically grows at high altitudes on the plateau of the Himalayan. Previous studies indicated that cordycepin, the main bioactive chemical of Cordyceps sinensis, has very potent anticancer, anti-oxidant and anti-inflammatory activities. However, its protective effects against atherosclerotic changes in vascular endothelial cells have not been fully elucidated. In this study, we showed that pretreatment with cordycepin significantly attenuated palmitic acid (PA)-induced cytotoxicity, reactive oxygen species (ROS) generation, and inflammatory responses. We found that PA decreased phosphorylation of Akt, eNOS, and bioavailability of nitric oxide (NO), which in turn activated NF-[Formula: see text]B and the downstream inflammatory responses. All these detrimental events were markedly blocked by pretreatment with cordycepin. Moreover, cordycepin ameliorated destabilization of mitochondrial permeability, cytosolic calcium rises, and apoptotic features caused by PA. In addition, all these anti-inflammatory and anti-apoptosis effects of cordycepin were found to be inhibited by the PI3K and eNOS inhibitor, suggesting that its anti-atherosclerotic effects may partially be mediated by the PI3K/Akt/eNOS signaling pathway.


Gerontology ◽  
1992 ◽  
Vol 38 (1) ◽  
pp. 29-35 ◽  
Author(s):  
Koji Maemura ◽  
Hiroki Kurihara ◽  
Toshisuke Morita ◽  
Yoshio Oh-hashi ◽  
Yoshio Yazaki

Sign in / Sign up

Export Citation Format

Share Document