Methods for derivation of LOH and allelic copy numbers using SNP arrays

Author(s):  
Carsten Wiuf ◽  
Philippe Lamy ◽  
Claus L. Andersen
Keyword(s):  
2010 ◽  
Vol 26 (15) ◽  
pp. 1827-1833 ◽  
Author(s):  
Maria Ortiz-Estevez ◽  
Henrik Bengtsson ◽  
Angel Rubio

2007 ◽  
Vol 8 (1) ◽  
pp. 434 ◽  
Author(s):  
Philippe Lamy ◽  
Claus L Andersen ◽  
Lars Dyrskjot ◽  
Niels Torring ◽  
Carsten Wiuf

2010 ◽  
Vol 10 (2) ◽  
pp. 83-98
Author(s):  
Quan Chen ◽  
Minghua Deng ◽  
Minping Qian ◽  
Lin Wan ◽  
Yi Xiao
Keyword(s):  

2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Xinping Fan ◽  
Guanghao Luo ◽  
Yu S. Huang

Abstract Background Copy number alterations (CNAs), due to their large impact on the genome, have been an important contributing factor to oncogenesis and metastasis. Detecting genomic alterations from the shallow-sequencing data of a low-purity tumor sample remains a challenging task. Results We introduce Accucopy, a method to infer total copy numbers (TCNs) and allele-specific copy numbers (ASCNs) from challenging low-purity and low-coverage tumor samples. Accucopy adopts many robust statistical techniques such as kernel smoothing of coverage differentiation information to discern signals from noise and combines ideas from time-series analysis and the signal-processing field to derive a range of estimates for the period in a histogram of coverage differentiation information. Statistical learning models such as the tiered Gaussian mixture model, the expectation–maximization algorithm, and sparse Bayesian learning were customized and built into the model. Accucopy is implemented in C++ /Rust, packaged in a docker image, and supports non-human samples, more at http://www.yfish.org/software/. Conclusions We describe Accucopy, a method that can predict both TCNs and ASCNs from low-coverage low-purity tumor sequencing data. Through comparative analyses in both simulated and real-sequencing samples, we demonstrate that Accucopy is more accurate than Sclust, ABSOLUTE, and Sequenza.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
J. A. M. C. Dirks ◽  
K. Janssen ◽  
C. J. P. A. Hoebe ◽  
T. H. B. Geelen ◽  
M. Lucchesi ◽  
...  

AbstractChlamydia trachomatis (CT) increases its plasmid numbers when stressed, as occurs in clinical trachoma samples. Most CT tests target the plasmid to increase the test sensitivity, but some only target the chromosome. We investigated clinical urogenital samples for total plasmid copy numbers to assess its diagnostic value and intra-bacterial plasmid copy numbers to assess its natural variation. Both plasmid and chromosome copies were quantified using qPCR, and the plasmid:chromosome ratio (PCr) calculated in two cohorts: (1) 383 urogenital samples for the total PCR (tPCr), and (2) 42 vaginal swabs, with one half treated with propium-monoazide (PMA) to prevent the quantification of extracellular DNA and the other half untreated to allow for both tPCr and intra-bacterial PCr (iPCr) quantification. Mann–Whitney U tests compared PCr between samples, in relation to age and gender. Cohort 1: tPCr varied greatly (1–677, median 16). Median tPCr was significantly higher in urines than vaginal swabs (32 vs. 11, p < 0.001). Cohort 2: iPCr was more stable than tPCr (range 0.1–3 vs. 1–11). To conclude, tPCr in urogenital samples was much more variable than previously described. Transport time and temperature influences DNA degradation, impacting chromosomal DNA more than plasmids and urine more than vaginal samples. Data supports a plasmid target in CT screening assays to increase clinical sensitivity.


2021 ◽  
Vol 22 (7) ◽  
pp. 3786
Author(s):  
Andreas Brodehl ◽  
Alexey Meshkov ◽  
Roman Myasnikov ◽  
Anna Kiseleva ◽  
Olga Kulikova ◽  
...  

About 50% of patients with arrhythmogenic cardiomyopathy (ACM) carry a pathogenic or likely pathogenic mutation in the desmosomal genes. However, there is a significant number of patients without positive familial anamnesis. Therefore, the molecular reasons for ACM in these patients are frequently unknown and a genetic contribution might be underestimated. Here, we used a next-generation sequencing (NGS) approach and in addition single nucleotide polymor-phism (SNP) arrays for the genetic analysis of two independent index patients without familial medical history. Of note, this genetic strategy revealed a homozygous splice site mutation (DSG2–c.378+1G>T) in the first patient and a nonsense mutation (DSG2–p.L772X) in combination with a large deletion in DSG2 in the second one. In conclusion, a recessive inheritance pattern is likely for both cases, which might contribute to the hidden medical history in both families. This is the first report about these novel loss-of-function mutations in DSG2 that have not been previously identi-fied. Therefore, we suggest performing deep genetic analyses using NGS in combination with SNP arrays also for ACM index patients without obvious familial medical history. In the future, this finding might has relevance for the genetic counseling of similar cases.


2018 ◽  
Vol 115 (17) ◽  
pp. E3969-E3977 ◽  
Author(s):  
Sasikumar Rajoo ◽  
Pascal Vallotton ◽  
Evgeny Onischenko ◽  
Karsten Weis

The nuclear pore complex (NPC) is an eightfold symmetrical channel providing selective transport of biomolecules across the nuclear envelope. Each NPC consists of ∼30 different nuclear pore proteins (Nups) all present in multiple copies per NPC. Significant progress has recently been made in the characterization of the vertebrate NPC structure. However, because of the estimated size differences between the vertebrate and yeast NPC, it has been unclear whether the NPC architecture is conserved between species. Here, we have developed a quantitative image analysis pipeline, termed nuclear rim intensity measurement (NuRIM), to precisely determine copy numbers for almost all Nups within native NPCs of budding yeast cells. Our analysis demonstrates that the majority of yeast Nups are present at most in 16 copies per NPC. This reveals a dramatic difference to the stoichiometry determined for the human NPC, suggesting that despite a high degree of individual Nup conservation, the yeast and human NPC architecture is significantly different. Furthermore, using NuRIM, we examined the effects of mutations on NPC stoichiometry. We demonstrate for two paralog pairs of key scaffold Nups, Nup170/Nup157 and Nup192/Nup188, that their altered expression leads to significant changes in the NPC stoichiometry inducing either voids in the NPC structure or substitution of one paralog by the other. Thus, our results not only provide accurate stoichiometry information for the intact yeast NPC but also reveal an intriguing compositional plasticity of the NPC architecture, which may explain how differences in NPC composition could arise in the course of evolution.


2021 ◽  
Vol 17 (1) ◽  
Author(s):  
Dan Yin ◽  
Jiajun Tian ◽  
Jing Yang ◽  
Yi Tang ◽  
Youxiang Diao

Abstract Background A novel goose-origin astrovirus (GoAstV) has broken out across China in recent years, causing gout in goslings with a mortality rate of around 50%. However, our understanding of the dynamic distribution, tissue tropism and pathogenesis of GoAstV is incomplete. In order to assess its pathogenicity, one-day-old goslings were inoculated separately with GoAstV via oral and subcutaneous injection routes. Results Clinical symptoms, gross and microscopic lesions, blood biochemical parameters and viral loads were detected and recorded for 20 days after infection. Typical gout was observed in experimental goslings. GoAstV can be replicated in tissues and cause pathological damage, especially in the kidney, liver, heart and spleen. Virus-specific genomic RNA was detected in blood, cloacal swabs and all representative tissues, and virus shedding was detected up to 20 days after inoculation, suggesting that GoAstV has a wide tissue tropism and spread systematically after inoculation. The viral copy numbers examined in kidney were the highest, followed by spleen and liver. Conclusion This experiment determined the accurate value of viral loads and biochemical indicators of GoAstV-induced goslings. These findings increase our understanding of the pathogenicity of GoAstV in goslings and provide more reference for future research.


2021 ◽  
Vol 28 (4) ◽  
pp. 2801-2811
Author(s):  
Feng Liu-Smith ◽  
Chi-Yang Chiu ◽  
Daniel L. Johnson ◽  
Phillip Winston Miller ◽  
Evan S. Glazer ◽  
...  

Background: Uveal melanoma (UVM) is a rare cancer that shows sex difference in incidence and survival, with little previous report for the underlying mechanism. Methods: This study used the SEER data (1974–2016) for an age-dependent analysis on sex difference in UVM, and further used the TCGA-UVM genomics dataset for analyzing the differential gene expression profiles in tumors from men and women. Results: Our results demonstrate a sex difference in older age (≥40 years) but not in younger patients, with men exhibiting a higher incidence rate than women. However, younger women have shown a continuous increasing trend since 1974. Examining the 11 major oncogenes and tumor suppressors in UVM revealed that EIF1AX showed a significant sex difference in mRNA accumulation and copy number variation, with female tumors expressing higher levels of EIF1AX and exhibiting more variations in copy numbers. EIF1AX mRNA levels were significantly inversely correlated with EIF1AX copy numbers in female tumors only, but not in male tumors. Differential gene expression analysis at the whole genomic level identified a set of 92 protein-coding and 16 RNA-coding genes which exhibited differential expression in men and women (fold of change cutoff at 1.7, adjusted p value < 0.05, FDR < 0.05). Network analysis showed significant difference in immune response and in disulfide bond formation, with EGR1/EGR2 and PDIA2 genes as regulators for immune response and disulfide bond formation, respectively. The melanocortin pathway which is linked to both melanin synthesis and obesity seems to be altered with unclear significance, as the sex difference in POMC, DCT/TYRP2, and MRAP2 was observed but with no clear direction. Conclusion: This study reveals possible mechanisms for the sex difference in tumorigenesis of UVM which has potentials for better understanding and prevention of UVM.


Sign in / Sign up

Export Citation Format

Share Document