Dynamics of the Indian Summer Monsoon Climate

Author(s):  
B.N. Goswami ◽  
Soumi Chakravorty

Lifeline for about one-sixth of the world’s population in the subcontinent, the Indian summer monsoon (ISM) is an integral part of the annual cycle of the winds (reversal of winds with seasons), coupled with a strong annual cycle of precipitation (wet summer and dry winter). For over a century, high socioeconomic impacts of ISM rainfall (ISMR) in the region have driven scientists to attempt to predict the year-to-year variations of ISM rainfall. A remarkably stable phenomenon, making its appearance every year without fail, the ISM climate exhibits a rather small year-to-year variation (the standard deviation of the seasonal mean being 10% of the long-term mean), but it has proven to be an extremely challenging system to predict. Even the most skillful, sophisticated models are barely useful with skill significantly below the potential limit on predictability. Understanding what drives the mean ISM climate and its variability on different timescales is, therefore, critical to advancing skills in predicting the monsoon. A conceptual ISM model helps explain what maintains not only the mean ISM but also its variability on interannual and longer timescales.The annual ISM precipitation cycle can be described as a manifestation of the seasonal migration of the intertropical convergence zone (ITCZ) or the zonally oriented cloud (rain) band characterized by a sudden “onset.” The other important feature of ISM is the deep overturning meridional (regional Hadley circulation) that is associated with it, driven primarily by the latent heat release associated with the ISM (ITCZ) precipitation. The dynamics of the monsoon climate, therefore, is an extension of the dynamics of the ITCZ. The classical land–sea surface temperature gradient model of ISM may explain the seasonal reversal of the surface winds, but it fails to explain the onset and the deep vertical structure of the ISM circulation. While the surface temperature over land cools after the onset, reversing the north–south surface temperature gradient and making it inadequate to sustain the monsoon after onset, it is the tropospheric temperature gradient that becomes positive at the time of onset and remains strongly positive thereafter, maintaining the monsoon. The change in sign of the tropospheric temperature (TT) gradient is dynamically responsible for a symmetric instability, leading to the onset and subsequent northward progression of the ITCZ. The unified ISM model in terms of the TT gradient provides a platform to understand the drivers of ISM variability by identifying processes that affect TT in the north and the south and influence the gradient.The predictability of the seasonal mean ISM is limited by interactions of the annual cycle and higher frequency monsoon variability within the season. The monsoon intraseasonal oscillation (MISO) has a seminal role in influencing the seasonal mean and its interannual variability. While ISM climate on long timescales (e.g., multimillennium) largely follows the solar forcing, on shorter timescales the ISM variability is governed by the internal dynamics arising from ocean–atmosphere–land interactions, regional as well as remote, together with teleconnections with other climate modes. Also important is the role of anthropogenic forcing, such as the greenhouse gases and aerosols versus the natural multidecadal variability in the context of the recent six-decade long decreasing trend of ISM rainfall.

2022 ◽  
Vol 578 ◽  
pp. 117327
Author(s):  
Syee Weldeab ◽  
Carsten Rühlemann ◽  
Qinghua Ding ◽  
Vyacheslav Khon ◽  
Birgit Schneider ◽  
...  

2014 ◽  
Vol 27 (7) ◽  
pp. 2757-2778 ◽  
Author(s):  
N. J. Burls ◽  
A. V. Fedorov

Abstract The mean east–west sea surface temperature gradient along the equator is a key feature of tropical climate. Tightly coupled to the atmospheric Walker circulation and the oceanic east–west thermocline tilt, it effectively defines tropical climate conditions. In the Pacific, its presence permits the El Niño–Southern Oscillation phenomenon. What determines this temperature gradient within the fully coupled ocean–atmosphere system is therefore a central question in climate dynamics, critical for understanding past and future climates. Using a comprehensive coupled model [Community Earth System Model (CESM)], the authors demonstrate how the meridional gradient in cloud albedo between the tropics and midlatitudes (Δα) sets the mean east–west sea surface temperature gradient in the equatorial Pacific. To change Δα in the numerical experiments, the authors change the optical properties of clouds by modifying the atmospheric water path, but only in the shortwave radiation scheme of the model. When Δα is varied from approximately −0.15 to 0.1, the east–west SST contrast in the equatorial Pacific reduces from 7.5°C to less than 1°C and the Walker circulation nearly collapses. These experiments reveal a near-linear dependence between Δα and the zonal temperature gradient, which generally agrees with results from the Coupled Model Intercomparison Project phase 5 (CMIP5) preindustrial control simulations. The authors explain the close relation between the two variables using an energy balance model incorporating the essential dynamics of the warm pool, cold tongue, and Walker circulation complex.


2018 ◽  
Vol 48 (3) ◽  
pp. 647-665 ◽  
Author(s):  
Ada Gjermundsen ◽  
Joseph H. LaCasce ◽  
Liv Denstad

AbstractThe global circulation driven solely by relaxation to an idealized surface temperature profile and to interior mixing is examined. Forcing by winds and evaporation/precipitation is excluded. The resulting circulation resembles the observed in many ways, and the overturning is of similar magnitude. The overturning is driven by large-scale upwelling in the interior (which is relatively large, because of the use of a constant mixing coefficient). The compensating downwelling occurs in the northern North Atlantic and in the Ross and Weddell Seas, with an additional, smaller contribution from the northern North Pacific. The latter is weaker because the Bering Strait limits the northward extent of the flow. The downwelling occurs in frictional layers near the boundaries and depends on the lateral shear in the horizontal flow. The shear, in turn, is linked to the imposed surface temperature gradient via thermal wind, and as such, the downwelling can be reduced or eliminated in selected regions by removing the surface gradient. Doing so in the northern North Atlantic causes the (thermally driven) Antarctic Circumpolar Current to intensify, increasing the sinking along Antarctica. Eliminating the surface gradient in the Southern Ocean increases the sinking in the North Atlantic and Pacific. As there is upwelling also in the western boundary currents, the flow must increase even more to accomplish the necessary downwelling. The implications of the results are then considered, particularly with respect to Arctic intensification of global warming, which will reduce the surface temperature gradient.


2017 ◽  
Vol 30 (13) ◽  
pp. 5083-5095 ◽  
Author(s):  
Suvarna Fadnavis ◽  
Rajib Chattopadhyay

The authors investigate the life cycle of a strong subtropical stratospheric intrusion event and propose a hypothesis through which it might reduce the intensity of the Indian summer monsoon (ISM) rainfall (ISMR) after the monsoon onset during June 2014. The diagnostic analysis of ERA-Interim data revealed that stratospheric intrusion occurs in the region of the subtropical westerly jet (SWJ) as a result of Rossby wave breaking (RWB). The RWB event is associated with eddy shedding. These eddies transport extratropical stratospheric mass and energy fluxes downward and southward to north India (NI). As a result, the intrusion spreads dry, cold, and ozone-rich air deep into the troposphere (~500 hPa) over the NI. It enhanced the static stability and weakens the north–south upper-tropospheric temperature gradient. The intrusion of cold and dry air persisted for the entire June, which might have inhibited northward propagation of ISM convection and could be responsible for prolonged hiatus in northward phase propagation of the ISM after onset. The relation between stratospheric intrusion events and ISMR from long-term data (1979–2007) is also investigated. The analysis shows that the stronger negative anomalies of rainfall are associated with stratospheric intrusions during break spells. Thus, the study reveals that stratospheric intrusion is an important factor that may influence ISMR deficit.


2018 ◽  
Vol 8 (1) ◽  
Author(s):  
Dhrubajyoti Samanta ◽  
Saji N. Hameed ◽  
Dachao Jin ◽  
Vishnu Thilakan ◽  
Malay Ganai ◽  
...  

MAUSAM ◽  
2022 ◽  
Vol 53 (3) ◽  
pp. 289-308
Author(s):  
D. R. KOTHAWALE ◽  
K. RUPA KUMAR

In the context of the ever increasing interest in the regional aspects of global warming, understanding the spatio-temporal variations of tropospheric temperature over India is of great importance. The present study, based on the data from 19 well distributed radiosonde stations for the period 1971-2000, examines the seasonal and annual mean temperature variations at the surface and five selected upper levels, viz., 850, 700, 500, 200 and 150 hPa. An attempt has also been made to bring out the association between tropospheric temperature variations over India and the summer monsoon variability, including the role of its major teleconnection parameter, the El Niño/Southern Oscillation (ENSO).   Seasonal and annual mean all-India temperature series are analyzed for surface and five tropospheric levels.  The mean annual cycles of temperature at different tropospheric levels indicate that the pre-monsoon season is slightly warmer than the monsoon season at the surface, 850 hPa and 150 hPa levels, while it is relatively cooler at all intermediate levels.  The mean annual temperature shows a warming of 0.18° C and 0.3° C per 10 years at the surface and 850 hPa, respectively.   Tropospheric temperature anomaly composites of excess (deficient) monsoon rainfall years show pronounced positive (negative) anomalies during the month of May, at all the levels.  The pre-monsoon pressure of Darwin has significant positive correlation with the monsoon temperature at the surface and 850 hPa.


Sign in / Sign up

Export Citation Format

Share Document