scholarly journals Linkages of Subtropical Stratospheric Intraseasonal Intrusions with Indian Summer Monsoon Deficit Rainfall

2017 ◽  
Vol 30 (13) ◽  
pp. 5083-5095 ◽  
Author(s):  
Suvarna Fadnavis ◽  
Rajib Chattopadhyay

The authors investigate the life cycle of a strong subtropical stratospheric intrusion event and propose a hypothesis through which it might reduce the intensity of the Indian summer monsoon (ISM) rainfall (ISMR) after the monsoon onset during June 2014. The diagnostic analysis of ERA-Interim data revealed that stratospheric intrusion occurs in the region of the subtropical westerly jet (SWJ) as a result of Rossby wave breaking (RWB). The RWB event is associated with eddy shedding. These eddies transport extratropical stratospheric mass and energy fluxes downward and southward to north India (NI). As a result, the intrusion spreads dry, cold, and ozone-rich air deep into the troposphere (~500 hPa) over the NI. It enhanced the static stability and weakens the north–south upper-tropospheric temperature gradient. The intrusion of cold and dry air persisted for the entire June, which might have inhibited northward propagation of ISM convection and could be responsible for prolonged hiatus in northward phase propagation of the ISM after onset. The relation between stratospheric intrusion events and ISMR from long-term data (1979–2007) is also investigated. The analysis shows that the stronger negative anomalies of rainfall are associated with stratospheric intrusions during break spells. Thus, the study reveals that stratospheric intrusion is an important factor that may influence ISMR deficit.

Author(s):  
B.N. Goswami ◽  
Soumi Chakravorty

Lifeline for about one-sixth of the world’s population in the subcontinent, the Indian summer monsoon (ISM) is an integral part of the annual cycle of the winds (reversal of winds with seasons), coupled with a strong annual cycle of precipitation (wet summer and dry winter). For over a century, high socioeconomic impacts of ISM rainfall (ISMR) in the region have driven scientists to attempt to predict the year-to-year variations of ISM rainfall. A remarkably stable phenomenon, making its appearance every year without fail, the ISM climate exhibits a rather small year-to-year variation (the standard deviation of the seasonal mean being 10% of the long-term mean), but it has proven to be an extremely challenging system to predict. Even the most skillful, sophisticated models are barely useful with skill significantly below the potential limit on predictability. Understanding what drives the mean ISM climate and its variability on different timescales is, therefore, critical to advancing skills in predicting the monsoon. A conceptual ISM model helps explain what maintains not only the mean ISM but also its variability on interannual and longer timescales.The annual ISM precipitation cycle can be described as a manifestation of the seasonal migration of the intertropical convergence zone (ITCZ) or the zonally oriented cloud (rain) band characterized by a sudden “onset.” The other important feature of ISM is the deep overturning meridional (regional Hadley circulation) that is associated with it, driven primarily by the latent heat release associated with the ISM (ITCZ) precipitation. The dynamics of the monsoon climate, therefore, is an extension of the dynamics of the ITCZ. The classical land–sea surface temperature gradient model of ISM may explain the seasonal reversal of the surface winds, but it fails to explain the onset and the deep vertical structure of the ISM circulation. While the surface temperature over land cools after the onset, reversing the north–south surface temperature gradient and making it inadequate to sustain the monsoon after onset, it is the tropospheric temperature gradient that becomes positive at the time of onset and remains strongly positive thereafter, maintaining the monsoon. The change in sign of the tropospheric temperature (TT) gradient is dynamically responsible for a symmetric instability, leading to the onset and subsequent northward progression of the ITCZ. The unified ISM model in terms of the TT gradient provides a platform to understand the drivers of ISM variability by identifying processes that affect TT in the north and the south and influence the gradient.The predictability of the seasonal mean ISM is limited by interactions of the annual cycle and higher frequency monsoon variability within the season. The monsoon intraseasonal oscillation (MISO) has a seminal role in influencing the seasonal mean and its interannual variability. While ISM climate on long timescales (e.g., multimillennium) largely follows the solar forcing, on shorter timescales the ISM variability is governed by the internal dynamics arising from ocean–atmosphere–land interactions, regional as well as remote, together with teleconnections with other climate modes. Also important is the role of anthropogenic forcing, such as the greenhouse gases and aerosols versus the natural multidecadal variability in the context of the recent six-decade long decreasing trend of ISM rainfall.


2015 ◽  
Vol 33 (8) ◽  
pp. 1051-1058 ◽  
Author(s):  
S. D. Bansod ◽  
S. Fadnavis ◽  
S. P. Ghanekar

Abstract. In this paper, interannual variability of tropospheric air temperatures over the Asian summer monsoon region during the pre-monsoon months is examined in relation to Indian summer monsoon rainfall (ISMR; June to September total rainfall). For this purpose, monthly grid-point temperatures in the entire troposphere over the Asian summer monsoon region and ISMR data for the period 1949–2012 have been used. Spatial correlation patterns are investigated between the temperature field in the lower tropospheric levels during May over the Asian summer monsoon region and ISMR. The results indicate a strong and significant northwest–southeast dipole structure in the spatial correlations over the Indian region, with highly significant positive (negative) correlations over the regions of north India and the western Tibetan Plateau region – region R1 (north Bay of Bengal: region R2). The observed dipole is seen significantly up to a level of 850 hPa and eventually disappears at 700 hPa. Thermal indices evaluated at 850 hPa level, based on average air temperatures over the north India and western Tibetan Plateau region (TI1) and the north Bay of Bengal region (TI2) during May, show a strong, significant relationship with the ISMR. The results are found to be consistent and robust, especially in the case of TI1 during the period of analysis. A physical mechanism for the relationship between these indices and ISMR is proposed. Finally the composite annual cycle of tropospheric air temperature over R1 during flood/drought years of ISMR is examined. The study brings out the importance of the TI1 in the prediction of flood/drought conditions over the Indian subcontinent.


2013 ◽  
Vol 141 (10) ◽  
pp. 3626-3640 ◽  
Author(s):  
João A. Santos ◽  
Tim Woollings ◽  
Joaquim G. Pinto

Abstract The atmospheric circulation over the North Atlantic–European sector experienced exceptional but highly contrasting conditions in the recent 2010 and 2012 winters (November–March, with the year dated by the relevant January). Evidence is given for the remarkably different locations of the eddy-driven westerly jet over the North Atlantic. In the 2010 winter the maximum of the jet stream was systematically between 30° and 40°N (south jet regime), whereas in the 2012 winter it was predominantly located around 55°N (north jet regime). These jet features underline the occurrence of either weak flow (2010) or strong and persistent ridges throughout the troposphere (2012). This is confirmed by the very different occurrence of blocking systems over the North Atlantic, associated with episodes of strong cyclonic (anticyclonic) Rossby wave breaking in 2010 (2012) winter. These dynamical features underlie strong precipitation and temperature anomalies over parts of Europe, with detrimental impacts on many socioeconomic sectors. Despite the highly contrasting atmospheric states, mid- and high-latitude boundary conditions do not reveal strong differences in these two winters. The two winters were associated with opposite ENSO phases, but there is no causal evidence of a remote forcing from the Pacific sea surface temperatures. Finally, the exceptionality of the two winters is demonstrated in relation to the last 140 years. It is suggested that these winters may be seen as archetypes of North Atlantic jet variability under current climate conditions.


2013 ◽  
Vol 141 (6) ◽  
pp. 2096-2106 ◽  
Author(s):  
V. V. M. Jagannadha Rao ◽  
M. Venkat Ratnam ◽  
Y. Durga Santhi ◽  
M. Roja Raman ◽  
M. Rajeevan ◽  
...  

Abstract Global positioning system (GPS) radio occultation (RO) data available during 2001–10 have been used to examine the variations in the refractivity during the onset of Indian summer monsoon (ISM) over the east Arabian Sea (5°–15°N, 65°–75°E). An enhancement of 5–10 N-units in the refractivity is observed around 4.8 km (~600 hPa) a few days (9.23 ± 3.6 days) before onset of the monsoon over Kerala, India. This is attributed to moisture buildup over the Arabian Sea during the monsoon onset phase. A sudden increase (1.5–2 K) in mean upper-tropospheric temperature at the time of onset and during the active phase of the monsoon is attributed to convective activity and the release of latent heat. On the day of monsoon onset over Kerala, an appreciable dip in the refractivity is observed that persisted for 1–3 days followed by an enhancement in refractivity with the active phase of the monsoon. An arbitrary value of 128 N-units difference between 4.8 km (~600 hPa) and 16 km (~100 hPa) coupled with a dip in refractivity on the day of monsoon arrival might give an indication of clear transition of atmospheric conditions and the detection of monsoon onset. Further, a good relation is also found between the activity of monsoon and variability in the refractivity.


2018 ◽  
Vol 31 (21) ◽  
pp. 8785-8801 ◽  
Author(s):  
Chihchung Chou ◽  
Dongryeol Ryu ◽  
Min-Hui Lo ◽  
Hao-Wei Wey ◽  
Hector M. Malano

From the 1980s, Indian summer monsoon rainfall (ISMR) shows a decreasing trend over north and northwest India, and there was a significant observed reduction in July over central and south India in 1982–2003. The key drivers of the changed ISMR, however, remain unclear. It was hypothesized that the large-scale irrigation development that started in the 1950s has resulted in land surface cooling, which slowed large-scale atmospheric circulation, exerting significant influences on ISMR. To test this hypothesis, a fully coupled model, the CESM v1.0.3, was used with a global irrigation dataset. In this study, spatially varying irrigation-induced feedback mechanisms are investigated in detail at different stages of the monsoon. Results show that soil moisture and evapotranspiration increase significantly over India throughout the summertime because of the irrigation. However, 2-m air temperature shows a significant reduction only in a limited region because the temperature change is influenced simultaneously by surface incoming shortwave radiation and evaporative cooling resulting from the irrigation, especially over the heavily irrigated region. Irrigation also induces a 925-hPa northeasterly wind from 30°N toward the equator. This is opposite to the prevailing direction of the Indian summer monsoon (ISM) wind that brings moist air to India. The modeled rainfall in the irrigated case significantly decreases up to 1.5 mm day−1 over central and north India from July to September. This paper reveals that the irrigation can contribute to both increasing and decreasing the surface temperature via multiple feedback mechanisms. The net effect is to weaken the ISM with the high spatial and temporal heterogeneity.


2013 ◽  
Vol 9 (6) ◽  
pp. 2451-2458 ◽  
Author(s):  
J. Duan ◽  
L. Wang ◽  
L. Li ◽  
Y. Sun

Abstract. A large number of glaciers in the Tibetan Plateau (TP) have experienced wastage in recent decades. And the wastage is different from region to region, even from glacier to glacier. A better understanding of long-term glacier variations and their linkage with climate variability requires extending the presently observed records. Here we present the first tree-ring-based glacier mass balance (MB) reconstruction in the TP, performed at the Hailuogou Glacier in southeastern TP during 1868–2007. The reconstructed MB is characterized mainly by ablation over the past 140 yr, and typical melting periods occurred in 1910s–1920s, 1930s–1960s, 1970s–1980s, and the last 20 yr. After the 1900s, only a few short periods (i.e., 1920s–1930s, the 1960s and the late 1980s) were characterized by accumulation. These variations can be validated by the terminus retreat velocity of Hailuogou Glacier and the ice-core accumulation rate in Guliya and respond well to regional and Northern Hemisphere temperature anomaly. In addition, the reconstructed MB is significantly and negatively correlated with August–September all-India monsoon rainfall (AIR) (r1871-2008 = −0.342, p < 0.0001). These results suggest that temperature variability is the dominant factor for the long-term MB variation at the Hailuogou Glacier. Indian summer monsoon precipitation does not affect the MB variation, yet the significant negative correlation between the MB and the AIR implies the positive effect of summer heating of the TP on Indian summer monsoon precipitation.


2020 ◽  
Vol 33 (14) ◽  
pp. 5953-5969 ◽  
Author(s):  
Philippe P. Papin ◽  
Lance F. Bosart ◽  
Ryan D. Torn

AbstractThis study examines climatological potential vorticity streamer (PVS) activity associated with Rossby wave breaking (RWB), which can impact TC activity in the subtropical North Atlantic (NATL) basin via moisture and wind anomalies. PVSs are identified along the 2-PVU (1 PVU = 10−6 K kg−1 m2 s−1) contour on the 350-K isentropic surface, using a unique identification technique that combines previous methods. In total, 21 149 individual PVS instances are identified from the ERA-Interim (ERAI) climatology during June–November over 1979–2015 with a peak in July–August. The total number of PVSs identified in this study is more than previous PVS climatologies for this region, since the new technique identifies a wider range of cases. Variations in PVS size and intensity prompt the development of a new PVS activity index (PVSI), which provides an integrated measure of PVS activity that can improve comparisons with TC activity. For instance, PVSI has a stronger negative correlation with seasonal TC activity (r = −0.55) relative to PVS frequency, size, or intensity alone. PVSI in June–July is also positively correlated with PVSI in August–November (r = 0.67), suggesting predictive capability. Compared to the ERAI and Japan Meteorological Agency 55-Year Reanalysis (JRA-55) climatology, there are more PVSs in the Climate Forecast System Reanalysis (CFSR) but these have weaker average intensity overall. While no long-term trend in PVSI is observed in the ERAI or JRA-55 climatologies, a negative trend is observed in CFSR, which could be related to differences in near tropopause static stability early in the climatological period (1979–86) between the CFSR and ERAI datasets.


2019 ◽  
Vol 92 (3) ◽  
pp. 738-753
Author(s):  
Dianbing Liu ◽  
Shushuang Liu ◽  
Yifan Fang

AbstractA 20-year-resolution speleothem δ18O record from southern China reveals a detailed Asian summer monsoon (ASM) history between 73.6 and 62.3 ka. ASM changes during Interstadial 19 and late MIS 4 matched Greenland temperature variations but were antiphased with Antarctic temperatures. However, long-term strengthening of the ASM in early MIS 4 agrees well with the gradual Antarctic warming, when Greenland remained in a stable cold state. More specifically, the ASM was less variable during peak interstadials in contrast to striking instabilities during stadials. These observations suggest that the factors dominating ASM variability change through time. During early MIS 4, negligible freshwater perturbations occurred in the North Atlantic, and sea-surface temperatures in the low- to midlatitude Pacific Ocean reached the modern level. Thus, an expansion of the Intertropical Convergence Zone (ITCZ) was likely important for the long-term ASM rise. In late MIS 4, the antiphase correlation between ASM and Antarctic temperature could be attributed to freshwater inputs into the North Atlantic and a southerly positioned ITCZ. Consequently, meridional ITCZ shifts, although within a limited latitudinal band, would result in an antiphase relationship between interhemispheric climate changes. Otherwise, an in-phase correlation could be expected if the centroid of ITCZ is stable along the equator.


Sign in / Sign up

Export Citation Format

Share Document