The Indian Ocean Dipole

Author(s):  
Saji N. Hameed

Discovered at the very end of the 20th century, the Indian Ocean Dipole (IOD) is a mode of natural climate variability that arises out of coupled ocean–atmosphere interaction in the Indian Ocean. It is associated with some of the largest changes of ocean–atmosphere state over the equatorial Indian Ocean on interannual time scales. IOD variability is prominent during the boreal summer and fall seasons, with its maximum intensity developing at the end of the boreal-fall season. Between the peaks of its negative and positive phases, IOD manifests a markedly zonal see-saw in anomalous sea surface temperature (SST) and rainfall—leading, in its positive phase, to a pronounced cooling of the eastern equatorial Indian Ocean, and a moderate warming of the western and central equatorial Indian Ocean; this is accompanied by deficit rainfall over the eastern Indian Ocean and surplus rainfall over the western Indian Ocean. Changes in midtropospheric heating accompanying the rainfall anomalies drive wind anomalies that anomalously lift the thermocline in the equatorial eastern Indian Ocean and anomalously deepen them in the central Indian Ocean. The thermocline anomalies further modulate coastal and open-ocean upwelling, thereby influencing biological productivity and fish catches across the Indian Ocean. The hydrometeorological anomalies that accompany IOD exacerbate forest fires in Indonesia and Australia and bring floods and infectious diseases to equatorial East Africa. The coupled ocean–atmosphere instability that is responsible for generating and sustaining IOD develops on a mean state that is strongly modulated by the seasonal cycle of the Austral-Asian monsoon; this setting gives the IOD its unique character and dynamics, including a strong phase-lock to the seasonal cycle. While IOD operates independently of the El Niño and Southern Oscillation (ENSO), the proximity between the Indian and Pacific Oceans, and the existence of oceanic and atmospheric pathways, facilitate mutual interactions between these tropical climate modes.

2016 ◽  
Vol 46 (3) ◽  
pp. 789-807 ◽  
Author(s):  
Gengxin Chen ◽  
Weiqing Han ◽  
Yuanlong Li ◽  
Dongxiao Wang

AbstractThe equatorial eastern Indian Ocean (EIO) upwelling occurs in the Indian Ocean warm pool, differing from the equatorial Pacific and Atlantic upwelling that occurs in the cold tongue. By analyzing observations and performing ocean model experiments, this paper quantifies the remote versus local forcing in causing interannual variability of the equatorial EIO upwelling from 2001 to 2011 and elucidates the associated processes. For all seasons, interannual variability of thermocline depth in the EIO, as an indicator of upwelling, is dominated by remote forcing from equatorial Indian Ocean winds, which drive Kelvin waves that propagate along the equator and subsequently along the Sumatra–Java coasts. Upwelling has prominent signatures in sea surface temperature (SST) and chlorophyll-a concentration but only in boreal summer–fall (May–October). Local forcing plays a larger role than remote forcing in producing interannual SST anomaly (SSTA). During boreal summer–fall, when the mean thermocline is relatively shallow, SSTA is primarily driven by the upwelling process, with comparable contributions from remote and local forcing effects. In contrast, during boreal winter–spring (November–April), when the mean thermocline is relatively deep, SSTA is controlled by surface heat flux and decoupled from thermocline variability. Advection affects interannual SSTA in all cases. The remote and local winds that drive the interannual variability of the equatorial EIO upwelling are closely associated with Indian Ocean dipole events and to a lesser degree with El Niño–Southern Oscillation.


2021 ◽  
Author(s):  
Lian-Yi Zhang ◽  
Yan Du ◽  
Wenju Cai ◽  
Zesheng Chen ◽  
Tomoki Tozuka ◽  
...  

<p>This study identifies a new triggering mechanism of the Indian Ocean Dipole (IOD) from the Southern Hemisphere. This mechanism is independent from the El Niño/Southern Oscillation (ENSO) and tends to induce the IOD before its canonical peak season. The joint effects of this mechanism and ENSO may explain different lifetimes and strengths of the IOD. During its positive phase, development of sea surface temperature cold anomalies commences in the southern Indian Ocean, accompanied by an anomalous subtropical high system and anomalous southeasterly winds. The eastward movement of these anomalies enhances the monsoon off Sumatra-Java during May-August, leading to an early positive IOD onset. The pressure variability in the subtropical area is related with the Southern Annular Mode, suggesting a teleconnection between high-latitude and mid-latitude climate that can further affect the tropics. To include the subtropical signals may help model prediction of the IOD event.</p>


2013 ◽  
Vol 10 (10) ◽  
pp. 6677-6698 ◽  
Author(s):  
J. C. Currie ◽  
M. Lengaigne ◽  
J. Vialard ◽  
D. M. Kaplan ◽  
O. Aumont ◽  
...  

Abstract. The Indian Ocean Dipole (IOD) and the El Niño/Southern Oscillation (ENSO) are independent climate modes, which frequently co-occur, driving significant interannual changes within the Indian Ocean. We use a four-decade hindcast from a coupled biophysical ocean general circulation model, to disentangle patterns of chlorophyll anomalies driven by these two climate modes. Comparisons with remotely sensed records show that the simulation competently reproduces the chlorophyll seasonal cycle, as well as open-ocean anomalies during the 1997/1998 ENSO and IOD event. Results suggest that anomalous surface and euphotic-layer chlorophyll blooms in the eastern equatorial Indian Ocean in fall, and southern Bay of Bengal in winter, are primarily related to IOD forcing. A negative influence of IOD on chlorophyll concentrations is shown in a region around the southern tip of India in fall. IOD also depresses depth-integrated chlorophyll in the 5–10° S thermocline ridge region, yet the signal is negligible in surface chlorophyll. The only investigated region where ENSO has a greater influence on chlorophyll than does IOD, is in the Somalia upwelling region, where it causes a decrease in fall and winter chlorophyll by reducing local upwelling winds. Yet unlike most other regions examined, the combined explanatory power of IOD and ENSO in predicting depth-integrated chlorophyll anomalies is relatively low in this region, suggestive that other drivers are important there. We show that the chlorophyll impact of climate indices is frequently asymmetric, with a general tendency for larger positive than negative chlorophyll anomalies. Our results suggest that ENSO and IOD cause significant and predictable regional re-organisation of chlorophyll via their influence on near-surface oceanography. Resolving the details of these effects should improve our understanding, and eventually gain predictability, of interannual changes in Indian Ocean productivity, fisheries, ecosystems and carbon budgets.


2010 ◽  
Vol 23 (5) ◽  
pp. 1240-1253 ◽  
Author(s):  
Xiao-Tong Zheng ◽  
Shang-Ping Xie ◽  
Gabriel A. Vecchi ◽  
Qinyu Liu ◽  
Jan Hafner

Abstract Low-frequency modulation and change under global warming of the Indian Ocean dipole (IOD) mode are investigated with a pair of multicentury integrations of a coupled ocean–atmosphere general circulation model: one under constant climate forcing and one forced by increasing greenhouse gas concentrations. In the unforced simulation, there is significant decadal and multidecadal modulation of the IOD variance. The mean thermocline depth in the eastern equatorial Indian Ocean (EEIO) is important for the slow modulation, skewness, and ENSO correlation of the IOD. With a shoaling (deepening) of the EEIO thermocline, the thermocline feedback strengthens, and this leads to an increase in IOD variance, a reduction of the negative skewness of the IOD, and a weakening of the IOD–ENSO correlation. In response to increasing greenhouse gases, a weakening of the Walker circulation leads to easterly wind anomalies in the equatorial Indian Ocean; the oceanic response to weakened circulation is a thermocline shoaling in the EEIO. Under greenhouse forcing, the thermocline feedback intensifies, but surprisingly IOD variance does not. The zonal wind anomalies associated with IOD are found to weaken, likely due to increased static stability of the troposphere from global warming. Linear model experiments confirm this stability effect to reduce circulation response to a sea surface temperature dipole. The opposing changes in thermocline and atmospheric feedbacks result in little change in IOD variance, but the shoaling thermocline weakens IOD skewness. Little change under global warming in IOD variance in the model suggests that the apparent intensification of IOD activity during recent decades is likely part of natural, chaotic modulation of the ocean–atmosphere system or the response to nongreenhouse gas radiative changes.


2015 ◽  
Vol 28 (20) ◽  
pp. 8021-8036 ◽  
Author(s):  
Yun Yang ◽  
Shang-Ping Xie ◽  
Lixin Wu ◽  
Yu Kosaka ◽  
Ngar-Cheung Lau ◽  
...  

Abstract This study evaluates the relative contributions to the Indian Ocean dipole (IOD) mode of interannual variability from the El Niño–Southern Oscillation (ENSO) forcing and ocean–atmosphere feedbacks internal to the Indian Ocean. The ENSO forcing and internal variability is extracted by conducting a 10-member coupled simulation for 1950–2012 where sea surface temperature (SST) is restored to the observed anomalies over the tropical Pacific but interactive with the atmosphere over the rest of the World Ocean. In these experiments, the ensemble mean is due to ENSO forcing and the intermember difference arises from internal variability of the climate system independent of ENSO. These elements contribute one-third and two-thirds of the total IOD variance, respectively. Both types of IOD variability develop into an east–west dipole pattern because of Bjerknes feedback and peak in September–November. The ENSO forced and internal IOD modes differ in several important ways. The forced IOD mode develops in August with a broad meridional pattern and eventually evolves into the Indian Ocean basin mode, while the internal IOD mode grows earlier in June, is more confined to the equator, and decays rapidly after October. The internal IOD mode is more skewed than the ENSO forced response. The destructive interference of ENSO forcing and internal variability can explain early terminating IOD events, referred to as IOD-like perturbations that fail to grow during boreal summer. The results have implications for predictability. Internal variability, as represented by preseason sea surface height anomalies off Sumatra, contributes to predictability considerably. Including this indicator of internal variability, together with ENSO, improves the predictability of IOD.


2021 ◽  
Vol 925 (1) ◽  
pp. 012007
Author(s):  
P A Utari

Abstract The evolution of Indian Ocean Dipole (IOD) events in 2006 and 2010 is investigated using observational data products that are made to understand several processes in the positive (negative) phase of IOD events. Two Acoustic Doppler Current Profiler (ADCP) moorings mounted at 90°E and 80.5°E along the equator were used to evaluate the zonal current variation during two contrasting Indian Ocean Dipole (IO) events. Westward anomalies of the zonal current were observed at 0°, 80.5°E during the peak phase of the positive IOD event from October to December 2006. Meanwhile, the observed zonal currents at 0°, 90°E only showed the short-term westward anomalies during October 2006. On the other hand, during the negative IOD event in 2010, the observed zonal current at both mooring locations indicated strong intraseasonal variations of the eastward anomalies from August to December 2010. Strong easterly (westerly) anomalies of the surface zonal winds were observed during the peak phase of the positive (negative) IOD event in 2006 (2010). These easterly (westerly) anomalies forced upwelling (downwelling) equatorial Kelvin waves indicated by the negative (positive) sea surface height anomalies. Strengthening (weakening) of upwelling (downwelling) along the equatorial Indian Ocean would be a significant factor for further understanding of IOD evolution.


2019 ◽  
Vol 32 (22) ◽  
pp. 7989-8001 ◽  
Author(s):  
David MacLeod ◽  
Cyril Caminade

Abstract El Niño–Southern Oscillation (ENSO) has large socioeconomic impacts worldwide. The positive phase of ENSO, El Niño, has been linked to intense rainfall over East Africa during the short rains season (October–December). However, we show here that during the extremely strong 2015 El Niño the precipitation anomaly over most of East Africa during the short rains season was less intense than experienced during previous El Niños, linked to less intense easterlies over the Indian Ocean. This moderate impact was not indicated by reforecasts from the ECMWF operational seasonal forecasting system, SEAS5, which instead forecast large probabilities of an extreme wet signal, with stronger easterly anomalies over the surface of the Indian Ocean and a colder eastern Indian Ocean/western Pacific than was observed. To confirm the relationship of the eastern Indian Ocean to East African rainfall in the forecast for 2015, atmospheric relaxation experiments are carried out that constrain the east Indian Ocean lower troposphere to reanalysis. By doing so the strong wet forecast signal is reduced. These results raise the possibility that link between ENSO and Indian Ocean dipole events is too strong in the ECMWF dynamical seasonal forecast system and that model predictions for the East African short rains rainfall during strong El Niño events may have a bias toward high probabilities of wet conditions.


2020 ◽  
Vol 33 (3) ◽  
pp. 925-940
Author(s):  
Malcolm J. King ◽  
Christian Jakob

AbstractConvection over the western equatorial Indian Ocean (WEIO) is strongly linked to precipitation over Africa and Australia but is poorly represented in current climate models, and its observed seasonal cycle is poorly understood. This study investigates the seasonal cycle of convection in the WEIO through rainfall and cloud measurements. Rainfall shows a single annual peak in early austral summer, but cloud proxies identify convective activity maxima in both boreal and austral summer. These diverging measures of convection during boreal summer are indicative of a reduction in the intensity of precipitation associated with a given cloud regime or cloud-top height during this time of year but an increase in the overall occurrence of high-top clouds and convectively active cloud regimes. The change in precipitation intensity associated with regimes is found to explain most of the changes in total precipitation during the period from May to November, whereas changes in the occurrence of convective regimes explains most of the changes throughout the rest of the year. The reduction in precipitation intensities associated with cloud regimes over the WEIO during boreal summer appears to be related to large-scale monsoon circulations, which suppress convection through forcing air descent in the midtroposphere and increase the apparent occurrence of convectively active cloud regimes through the advection of high-level cloud from monsoon-active areas toward the WEIO region.


Sign in / Sign up

Export Citation Format

Share Document