4. The eightfold path: organizing the elements

Author(s):  
Philip Ball

‘The eightfold path: organizing the elements’ explains the history and rationale of the Periodic Table. Atomic theory was not fully accepted until Jean Perrin proved the existence of atoms in 1908. Rutherford et al went further, elucidating subatomic particles. This provided new insights into the Periodic Table, created decades earlier by Mendeleyev. Mendeleyev was not the first to attempt to group the elements. However, an improved set of atomic weights published in 1860 caused an upsurge in research. Mendeleyev's Table showed the order underlying the elements, left gaps for new elements, and questioned irreconcilable data. This data was eventually reconciled partly by Rutherford, and partly by Bohr's application of quantum theory.

2021 ◽  
Author(s):  
Rochelle Forrester

The change from the traditional Western and Chinese view of the elements involving materials such as water, air, earth, wood, metal and fire, to the chemical elements making up the periodic table, to atoms, to particles such as protons, neutrons and electrons, and then to quarks was inevitable. The order of discovery of these ideas of the ultimate constituents of matter was necessary, in that they could not have been discovered in any other order. This was because nature has a particular structure and we have a particular place in nature. The traditional view of the elements could be obtained by naked eye observation, and the view of nature as being made up of the chemical elements in the periodic table was next discovered, as it involved the decomposition of traditional elements, such as air and water. This led to the idea there was a separate atom for each element which explained the differences between the elements. The sub atomic particles were discovered in a necessary order with the outer particles like the electron being discovered earlier, and inner particles such as quarks being discovered later. The order of discovery of particles was also affected by the properties of the particles. The charges of particles, their mass and ability to survive outside the particles they make up, and other properties will make a particle harder or easier to discover. The order of discovery is inevitable and set by the structure of the universe. The structure of the universe includes the structure of the atom, and of the particles making up the atom, and the properties of the atom, and of the particles making up the atom.


Author(s):  
Eric Scerri

In chapter 7, the influence of the old quantum theory on the periodic system was considered. Although the development of this theory provided a way of reexpressing the periodic table in terms of the number of outer-shell electrons, it did not yield anything essentially new to the understanding of chemistry. Indeed, in several cases, chemists such as Irving Langmuir, J.D. Main Smith, and Charles Bury were able to go further than physicists in assigning electronic configurations, as described in chapter 8, because they were more familiar with the chemical properties of individual elements. Moreover, despite the rhetoric in favor of quantum mechanics that was propagated by Niels Bohr and others, the discovery that hafnium was a transition metal and not a rare earth was not made deductively from the quantum theory. It was essentially a chemical fact that was accommodated in terms of the quantum mechanical understanding of the periodic table. The old quantum theory was quantitatively impotent in the context of the periodic table since it was not possible to even set up the necessary equations to begin to obtain solutions for the atoms with more than one electron. An explanation could be given for the periodic table in terms of numbers of electrons in the outer shells of atoms, but generally only after the fact. But when it came to trying to predict quantitative aspects of atoms, such as the ground-state energy of the helium atom, the old quantum theory was quite hopeless. As one physicist stated, “We should not be surprised . . . even the astronomers have not yet satisfactorily solved the three-body problem in spite of efforts over the centuries.” A succession of the best minds in physics, including Hendrik Kramers, Werner Heisenberg, and Arnold Sommerfeld, made strenuous attempts to calculate the spectrum of helium but to no avail. It was only following the introduction of the Pauli exclusion principle and the development of the new quantum mechanics that Heisenberg succeeded where everyone else had failed.


Author(s):  
Frank S. Levin

Chapter 3 focuses on the concept of atoms, which dates back to the ancient Greek philosopher Leucippus, who claimed that everything consisted of them. This view began to be accepted among scientists when John Dalton championed it in the 1800s, although he was wrong in his atomic structure of molecules. That was corrected not long after by Jöns Berzelius. From then on the reality of atoms, and whether those of chemistry were the same as those of physics was a matter of debate. The theory of statistical mechanics, developed in the second half of the nineteenth century, helped establish their reality for most physicists, while many chemists were won over later, in part by the periodic table developed by the Russian Dimitri Mendeleev. Nearly every scientist was finally convinced by the explanation of Brownian motion by Albert Einstein and Marian Smoluchowski, whose formulas were verified by Jean Perrin in 1909.


Author(s):  
Robert E. Criss

The discovery of isotopes is best understood in the context of the spectacular advances in physics and chemistry that transpired during the last 200 years. Around the year 1800, compounds and elements had been distinguished. About 39 elements were recognized, and discoveries of new elements were occurring rapidly. At about this time, the chemist John Dalton revived the ancient idea of the atom, a word derived from the Greek “atomos,” which literally means “indivisible.” According to Dalton’s theory, all matter is made of atoms which are immutable and which cannot be further subdivided. Moreover, Dalton argued that all atoms of a given element are identical in all respects, including mass, but that atoms of different elements have different masses. Even today, Dalton’s atomic theory would be accepted by a casual reader, yet later developments have shown that it is erroneous in almost every one of its key aspects. Nevertheless, Dalton’s concept of the atom was a great advance, and, with it, he not only produced the first table of atomic weights, but also generated the concept that compounds comprise elements combined in definite proportions. His theory laid the groundwork for many other important advances in early nineteenth-century chemistry, including Avogadro’s 1811 hypothesis that equal volumes of gas contain equal numbers of particles, and Prout’s 1815 hypothesis that the atomic weights of the elements are integral multiples of the weight of hydrogen. By 1870, approximately 65 elements had been identified. In that year, Mendeleev codified much of the available chemical knowledge in his “periodic table,” which basically portrayed the relationships between the chemical properties of the elements and their atomic weights. The regularities that Mendeleev found directly lead to the discovery of several “new” elements—for example, Sc, Ga, Ge, and Hf—that filled vacancies in his table and confirmed his predictions of their chemical properties and atomic weights. Similarly, shortly after Rayleigh and Ramsay isolated Ar from air in 1894, the element He was isolated from uranium minerals in 1895; the elements Ne, Kr, and Xe were found in air in 1898; and Rn was discovered in 1900.


2021 ◽  
Vol 77 (3) ◽  
Author(s):  
Delia A. Haynes ◽  
Margaret A.L. Blackie

The question of what everything around us is made from has fascinated humanity since ancient times. The development of ideas on what the building blocks of matter are, and how these building blocks come together to form materials, are discussed in this contribution. In order to manipulate matter in a useful way, an understanding of the structure of the building blocks is the key. For this reason, atomic theory and bonding theory are introduced. An explanation of the periodic table shows why it is such a powerful predictive tool, and the use of symbols in chemistry is discussed.Contribution: In this article, the historical development of key ideas in our understanding of matter is presented, along with some of the important ideas in understanding how matter behaves. As part of this special collection, the implications of the meaning and utilisation of this knowledge are also considered.


Author(s):  
Eric R. Scerri

The periodic table of elements provides an arrangement of the chemical elements, ordered by their atomic number, electron configuration, and recurring chemical properties. The Periodic Table: A Very Short Introduction considers what led to the table’s construction and shows how the deeper meaning of its structure gradually became apparent with the development of atomic theory and quantum mechanics, which underlies the behaviour of all of the elements and their compounds. This new edition celebrates the completion of the seventh period of the table, with the ratification and naming of elements 113, 115, 117, and 118 as nihonium, moscovium, tennessine, and oganesson, and incorporates recent advances in our understanding of the origin of the elements.


2021 ◽  
Vol 21 (2) ◽  
Author(s):  
Eduardo Simões

The objective of this article is to demonstrate how the historical debate between materialism and idealism, in the field of Philosophy, extends, in new clothes, to the field of Quantum Physics characterized by realism and anti-realism. For this, we opted for a debate, also historical, between the realism of Albert Einstein, for whom reality exists regardless of the existence of the knowing subject, and Niels Bohr, for whom we do not have access to the ultimate reality of the matter, unless conditioning it to the existence of an observer endowed with rationality, position adopted in the Interpretation of Complementarity (1927) – posture that was expanded in 1935 when Bohr assumed a “relationalist” conception, according to which the quantum state is defined by the relationship between the quantum object and the entire measuring device. This is an extremely important debate, as it further consolidates the results of nascent Quantum Mechanics, guaranteeing Bohr the leadership of the orthodoxy based on the interpretation of complementarity. Here, when dealing with Quantum Theory, we will not make any distinction between the terms Quantum Physics, Quantum Theory or Quantum Mechanics. The entire discussion will be held under the name “Quantum Theory”. Theory that tries to analyze and describe the behavior of physical systems of reduced dimensions, close to the sizes of molecules, atoms and subatomic particles. We hope that the reader will appreciate the genius of these two titans in this field of Physics when they magnificently formulate the arguments that support the object of their defenses.


Sign in / Sign up

Export Citation Format

Share Document