A brief summary of atomic theory, the basis of the periodic table and some trends in atomic properties

Author(s):  
Philip Ball

‘The eightfold path: organizing the elements’ explains the history and rationale of the Periodic Table. Atomic theory was not fully accepted until Jean Perrin proved the existence of atoms in 1908. Rutherford et al went further, elucidating subatomic particles. This provided new insights into the Periodic Table, created decades earlier by Mendeleyev. Mendeleyev was not the first to attempt to group the elements. However, an improved set of atomic weights published in 1860 caused an upsurge in research. Mendeleyev's Table showed the order underlying the elements, left gaps for new elements, and questioned irreconcilable data. This data was eventually reconciled partly by Rutherford, and partly by Bohr's application of quantum theory.


2018 ◽  
Vol 48 ◽  
pp. 01020
Author(s):  
Şenol Şen

The purpose of this study was to examine the preservice chemistry teachers’ understanding of periodic table concepts and some atomic properties. The study group of this study was comprised of 17 preservice chemistry teachers who were undergraduate students at a public University. The preservice teachers’ ages are between 19 and 26, and the mean is 21.12 (SD=1.83). In addition, the 14 of the preservice teachers are female and three are male. In the study, concept maps and lotus blossom technique were used as data collection tools in order to determine the understanding of preservice chemistry teachers about the periodic table concepts. Data obtained through these techniques was analysed to figure out the useful of these assessment tools. The results of the analysis indicated that preservice teachers have limited understanding of the periodic table and its properties. In addition, at the end of the study, it was determined that they have many misunderstanding.


Author(s):  
Benzhen Yao ◽  
Vladimir L. Kuznetsov ◽  
Tiancun Xiao ◽  
Daniel R. Slocombe ◽  
C. N. R. Rao ◽  
...  

The demarcation of the chemical elements into metals and non-metals dates back to the dawn of Dmitri Mendeleev's construction of the periodic table; it still represents the cornerstone of our view of modern chemistry. In this contribution, a particular emphasis will be attached to the question ‘Why do the chemical elements of the periodic table exist either as metals or non-metals under ambient conditions?’ This is perhaps most apparent in the p-block of the periodic table where one sees an almost-diagonal line separating metals and non-metals. The first searching, quantum-mechanical considerations of this question were put forward by Hund in 1934. Interestingly, the very first discussion of the problem—in fact, a pre-quantum-mechanical approach—was made earlier, by Goldhammer in 1913 and Herzfeld in 1927. Their simple rationalization, in terms of atomic properties which confer metallic or non-metallic status to elements across the periodic table, leads to what is commonly called the Goldhammer–Herzfeld criterion for metallization. For a variety of undoubtedly complex reasons, the Goldhammer–Herzfeld theory lay dormant for close to half a century. However, since that time the criterion has been repeatedly applied, with great success, to many systems and materials exhibiting non-metal to metal transitions in order to predict, and understand, the precise conditions for metallization. Here, we review the application of Goldhammer–Herzfeld theory to the question of the metallic versus non-metallic status of chemical elements within the periodic system. A link between that theory and the work of Sir Nevill Mott on the metal-non-metal transition is also highlighted. The application of the ‘simple’, but highly effective Goldhammer–Herzfeld and Mott criteria, reveal when a chemical element of the periodic table will behave as a metal, and when it will behave as a non-metal. The success of these different, but converging approaches, lends weight to the idea of a simple, universal criterion for rationalizing the instantly-recognizable structure of the periodic table where … the metals are here, the non-metals are there … The challenge of the metallic and non-metallic states of oxides is also briefly introduced. This article is part of the theme issue ‘Mendeleev and the periodic table’.


Author(s):  
Robert E. Criss

The discovery of isotopes is best understood in the context of the spectacular advances in physics and chemistry that transpired during the last 200 years. Around the year 1800, compounds and elements had been distinguished. About 39 elements were recognized, and discoveries of new elements were occurring rapidly. At about this time, the chemist John Dalton revived the ancient idea of the atom, a word derived from the Greek “atomos,” which literally means “indivisible.” According to Dalton’s theory, all matter is made of atoms which are immutable and which cannot be further subdivided. Moreover, Dalton argued that all atoms of a given element are identical in all respects, including mass, but that atoms of different elements have different masses. Even today, Dalton’s atomic theory would be accepted by a casual reader, yet later developments have shown that it is erroneous in almost every one of its key aspects. Nevertheless, Dalton’s concept of the atom was a great advance, and, with it, he not only produced the first table of atomic weights, but also generated the concept that compounds comprise elements combined in definite proportions. His theory laid the groundwork for many other important advances in early nineteenth-century chemistry, including Avogadro’s 1811 hypothesis that equal volumes of gas contain equal numbers of particles, and Prout’s 1815 hypothesis that the atomic weights of the elements are integral multiples of the weight of hydrogen. By 1870, approximately 65 elements had been identified. In that year, Mendeleev codified much of the available chemical knowledge in his “periodic table,” which basically portrayed the relationships between the chemical properties of the elements and their atomic weights. The regularities that Mendeleev found directly lead to the discovery of several “new” elements—for example, Sc, Ga, Ge, and Hf—that filled vacancies in his table and confirmed his predictions of their chemical properties and atomic weights. Similarly, shortly after Rayleigh and Ramsay isolated Ar from air in 1894, the element He was isolated from uranium minerals in 1895; the elements Ne, Kr, and Xe were found in air in 1898; and Rn was discovered in 1900.


2021 ◽  
Vol 77 (3) ◽  
Author(s):  
Delia A. Haynes ◽  
Margaret A.L. Blackie

The question of what everything around us is made from has fascinated humanity since ancient times. The development of ideas on what the building blocks of matter are, and how these building blocks come together to form materials, are discussed in this contribution. In order to manipulate matter in a useful way, an understanding of the structure of the building blocks is the key. For this reason, atomic theory and bonding theory are introduced. An explanation of the periodic table shows why it is such a powerful predictive tool, and the use of symbols in chemistry is discussed.Contribution: In this article, the historical development of key ideas in our understanding of matter is presented, along with some of the important ideas in understanding how matter behaves. As part of this special collection, the implications of the meaning and utilisation of this knowledge are also considered.


Author(s):  
Eric R. Scerri

The periodic table of elements provides an arrangement of the chemical elements, ordered by their atomic number, electron configuration, and recurring chemical properties. The Periodic Table: A Very Short Introduction considers what led to the table’s construction and shows how the deeper meaning of its structure gradually became apparent with the development of atomic theory and quantum mechanics, which underlies the behaviour of all of the elements and their compounds. This new edition celebrates the completion of the seventh period of the table, with the ratification and naming of elements 113, 115, 117, and 118 as nihonium, moscovium, tennessine, and oganesson, and incorporates recent advances in our understanding of the origin of the elements.


Author(s):  
Solen Ekesan ◽  
Judith Herzfeld

The monotonic and non-monotonic variations of atomic properties within and between the rows of the periodic table underlie our understanding of chemistry and accounting for these variations has been a signature strength of quantum mechanics (QM). However, the computational burden of QM motivates the development of more efficient means of describing electrons and reactivity. The recently developed LEWIS • model incorporates lessons learnt from QM into a force field that includes electrons as explicit pseudo-classical particles. Here, we extend LEWIS • across the 2 p and 3 p elements, and show that it is capable of reproducing both monotonic and non-monotonic variations of chemically important atomic properties in a cost-effective manner. An indicator of the strength of the construct is the ability of pairwise potentials trained on ionization energies and the order of spin configurations to predict atomic polarizabilities. In this manner, some insights of QM are uncoupled from its onerous computational burden.


Author(s):  
Jens Paaske

The article views collections as non-random accumulations, i.e. objects with interrelations and a well hidden, unifying theme. In the greatest of all collections, referred to loosely as the universe, such interrelations make up the “laws of nature” of which we have already unravelled so many. The theme under which it was all put together, however, has still to be revealed. After briefly outlining the evolution in physics from Democritos’ atomic theory to the 19th century advent of the periodic table of the elements, the article continues with a descent into the finer details of matter, ending up at the quarks and leptons which constitute the matter particles of the so-called standard model of elementary particles. The collection of all matter hitherto observed in the universe has repeatedly been subjected to a reduction based on the rationale that seemingly different objects are identified merely as different manifestations of the same object. A simpler, yet representative collection is established once the emerging structures of the collection at hand have been properly resolved. It is the nature of this sobering reductionist process which is the topic in which the discussion draws upon a selection of examples from the ancient, as well as the more contemporary, history of physics.  


2021 ◽  
Author(s):  
Rochelle Forrester

This paper was written to investigate the order of discoveries made in chemistry leading up to the discovery of the periodic table. New experimental techniques, such as the pneumatic trough, voltaic pile, spectroscopy, and potassium analysis led to the discovery of many new elements and their properties which enabled the discovery of the periodic table. The discoveries led to the demise of the classical theory of the elements, to the end of the phlogiston theory and to the creation of the modern ideas of the elements and of the atomic theory. The paper shows the discoveries were made in a necessary and inevitable order with new experimental techniques leading to the discovery of new elements which eventually led to the discovery of the periodic table.


Sign in / Sign up

Export Citation Format

Share Document