8. Polymers, plastics, and textiles

Author(s):  
Graham Patrick

Over the last fifty years, synthetic materials have largely replaced natural materials such as wood, leather, wool, and cotton. Plastics and polymers are perhaps the most visible sign of how organic chemistry has changed society. ‘Polymers, plastics, and textiles’ explains that polymerization involves linking molecular building blocks (termed monomers) into long molecular strands called polymers and describes the two general approaches to preparing polymers: addition polymers and condensation polymers. The various health, environmental, ecological, and economic issues are considered before looking at the processes of recycling and depolymerization and recent efforts to develop biodegradable plastics and bioplastics. It ends with exciting new developments of new polymers with novel applications.

Author(s):  
Daniel Lambrecht ◽  
Eric Berquist

We present a first principles approach for decomposing molecular linear response properties into orthogonal (additive) plus non-orthogonal/cooperative contributions. This approach enables one to 1) identify the contributions of molecular building blocks like functional groups or monomer units to a given response property and 2) quantify cooperativity between these contributions. In analogy to the self consistent field method for molecular interactions, SCF(MI), we term our approach LR(MI). The theory, implementation and pilot data are described in detail in the manuscript and supporting information.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Joaquin Caro-Astorga ◽  
Kenneth T. Walker ◽  
Natalia Herrera ◽  
Koon-Yang Lee ◽  
Tom Ellis

AbstractEngineered living materials (ELMs) based on bacterial cellulose (BC) offer a promising avenue for cheap-to-produce materials that can be programmed with genetically encoded functionalities. Here we explore how ELMs can be fabricated in a modular fashion from millimetre-scale biofilm spheroids grown from shaking cultures of Komagataeibacter rhaeticus. Here we define a reproducible protocol to produce BC spheroids with the high yield bacterial cellulose producer K. rhaeticus and demonstrate for the first time their potential for their use as building blocks to grow ELMs in 3D shapes. Using genetically engineered K. rhaeticus, we produce functionalized BC spheroids and use these to make and grow patterned BC-based ELMs that signal within a material and can sense and report on chemical inputs. We also investigate the use of BC spheroids as a method to regenerate damaged BC materials and as a way to fuse together smaller material sections of cellulose and synthetic materials into a larger piece. This work improves our understanding of BC spheroid formation and showcases their great potential for fabricating, patterning and repairing ELMs based on the promising biomaterial of bacterial cellulose.


Polyhedron ◽  
2011 ◽  
Vol 30 (15) ◽  
pp. 2550-2557 ◽  
Author(s):  
Katarzyna Suracka ◽  
Alina Bieńko ◽  
Jerzy Mroziński ◽  
Rafał Kruszyński ◽  
Dariusz Bieńko ◽  
...  

2021 ◽  
Author(s):  
Luuk Kortekaas ◽  
Julian Simke ◽  
Niklas Arndt ◽  
Marcus Böckmann ◽  
Nikos Doltsinis ◽  
...  

Molecular photoswitches play a vital role in the development of responsive materials. These molecular building blocks are particularly attractive when multiple stimuli can be combined to bring about physical changes,...


2015 ◽  
Vol 03 (01n02) ◽  
pp. 1540004 ◽  
Author(s):  
Xialu Wu ◽  
David J. Young ◽  
T. S. Andy Hor

As molecular synthesis advances, we are beginning to learn control of not only the chemical reactivity (and function) of molecules, but also of their interactions with other molecules. It is this basic idea that has led to the current explosion of supramolecular science and engineering. Parallel to this development, chemists have been actively pursuing the design of very large molecules using basic molecular building blocks. Herein, we review the general development of supramolecular chemistry and particularly of two new branches: supramolecular coordination complexes (SCCs) and metal organic frameworks (MOFs). These two fields are discussed in detail with typical examples to illustrate what is now possible and what challenges lie ahead for tomorrow's molecular artisans.


2013 ◽  
Vol 85 (8) ◽  
pp. 1683-1692 ◽  
Author(s):  
Valeria Corne ◽  
María Celeste Botta ◽  
Enrique D. V. Giordano ◽  
Germán F. Giri ◽  
David F. Llompart ◽  
...  

Modern organic chemistry requires easily obtainable chiral building blocks that show high chemical versatility for their application in the synthesis of enantiopure compounds. Biomass has been demonstrated to be a widely available raw material that represents the only abundant source of renewable organic carbon. Through the pyrolitic conversion of cellulose or cellulose-containing materials it is possible to produce levoglucosenone, a highly functionalized chiral structure. This compound has been innovatively used as a template for the synthesis of key intermediates of biologically active products and for the preparation of chiral auxiliaries, catalysts, and organocatalysts for their application in asymmetric synthesis.


Author(s):  
Zhenpeng Yao ◽  
Benjamin Sanchez-Lengeling ◽  
N. Scott Bobbitt ◽  
Benjamin J. Bucior ◽  
Sai Govind Hari Kumar ◽  
...  

Reticular frameworks are crystalline porous materials that form <i>via</i> the self-assembly of molecular building blocks (<i>i.e.</i>, nodes and linkers) in different topologies. Many of them have high internal surface areas and other desirable properties for gas storage, separation, and other applications. The notable variety of the possible building blocks and the diverse ways they can be assembled endow reticular frameworks with a near-infinite combinatorial design space, making reticular chemistry both promising and challenging for prospective materials design. Here, we propose an automated nanoporous materials discovery platform powered by a supramolecular variational autoencoder (SmVAE) for the generative design of reticular materials with desired functions. We demonstrate the automated design process with a class of metal-organic framework (MOF) structures and the goal of separating CO<sub>2</sub> from natural gas or flue gas. Our model exhibits high fidelity in capturing structural features and reconstructing MOF structures. We show that the autoencoder has a promising optimization capability when jointly trained with multiple top adsorbent candidates identified for superior gas separation. MOFs discovered here are strongly competitive against some of the best-performing MOFs/zeolites ever reported. This platform lays the groundwork for the design of reticular frameworks for desired applications.


Author(s):  
A.V. Kovtun ◽  
◽  
S.A. Varenichenko ◽  
E.V. Zaliznaya ◽  
A.V. Mazepa ◽  
...  

We have proposed a method for the synthesis of previously unknown bromo xanthenes using the reagent PBr3/DMF as a rearrangement initiator. Bromo derivatives of xanthenes in the form of organic perchlorates were prepared by reacting the corresponding benzo(naphtho)dioxin-4(1)-ones with a three-fold excess of Vilsmeier-Haack PBr3/DMF reagent at 1100C for 2 hours, followed by the addition of sodium perchlorate. The conditions for the synthesis of formyl derivatives of xanthenes under conditions of acid hydrolysis were selected. The structure of the compounds was confirmed by 1H and 13C NMR spectral data and mass spectrometry. Preliminary studies showed that it is possible to selectively replace the dimethylamino group and the bromine atom with various nucleophiles in bromo derivatives of xanthenes, which opens up wide possibilities for the synthesis of low-molecular building blocks and dyes.


2021 ◽  
Author(s):  
Paweena Chaoprasid ◽  
Peer Lukat ◽  
Sabrina Mühlen ◽  
Thomas Heidler ◽  
Emerich‐Mihai Gazdag ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document