3. Fossil hominins

Author(s):  
Bernard Wood

‘Fossil hominins: their discovery and context’ discusses what the hominin fossil record consists of, how it is discovered and recovered, and how it and its context are investigated, which includes the processes of dating fossils and reconstructing past environments. It reviews the evidence that can be used to investigate what the 6–8 million-year-old hominin clade looks like. How much of it can be reconstructed by looking at variation in modern humans, and what needs to be investigated by searching for, finding, and then interpreting fossil and archaeological evidence? How do researchers decide where to look for new fossil sites, and how do they date any fossils they find at those sites?

PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e12240
Author(s):  
Dexter Zirkle ◽  
Richard S. Meindl ◽  
C. Owen Lovejoy

Background A novel physis in hominins modulates broadening and shortening of the ilium. We report analysis of a vascular canal system whose origin may be associated with this physis and which appears to be also unique to hominins. Its presence is potentially identifiable in the fossil record by its association with a highly enlarged foramen that is consistently present in modern humans and hominin fossils. Methods We measured the diameter of this foramen in humans, fossil hominins, and African great apes and corrected for body size. Results The mean relative human foramen diameter is significantly greater than those of either Pan or Gorilla. Moreover, eight of the nine values of the Cohen’s d for these differences in ratios are highly significant and support the ordering of magnitudes: Pan < Gorilla < Homo. The relative foramen diameter of A.L. 288-1 is above the 75th percentile of all other hominoids and at the high end of humans. The foramen is also present in ARA-VP-6/500. Conclusions We posit that the presence and significant enlargement of this foramen in fossils can reasonably serve as an indicator that its anterior inferior iliac spine emerged via the unique hominin physis. The foramen can therefore serve as an indicator of hominin iliac ontogenetic specialization for bipedality in fossil taxa.


2014 ◽  
Vol 112 (2) ◽  
pp. 366-371 ◽  
Author(s):  
Habiba Chirchir ◽  
Tracy L. Kivell ◽  
Christopher B. Ruff ◽  
Jean-Jacques Hublin ◽  
Kristian J. Carlson ◽  
...  

Humans are unique, compared with our closest living relatives (chimpanzees) and early fossil hominins, in having an enlarged body size and lower limb joint surfaces in combination with a relatively gracile skeleton (i.e., lower bone mass for our body size). Some analyses have observed that in at least a few anatomical regions modern humans today appear to have relatively low trabecular density, but little is known about how that density varies throughout the human skeleton and across species or how and when the present trabecular patterns emerged over the course of human evolution. Here, we test the hypotheses that (i) recent modern humans have low trabecular density throughout the upper and lower limbs compared with other primate taxa and (ii) the reduction in trabecular density first occurred in early Homo erectus, consistent with the shift toward a modern human locomotor anatomy, or more recently in concert with diaphyseal gracilization in Holocene humans. We used peripheral quantitative CT and microtomography to measure trabecular bone of limb epiphyses (long bone articular ends) in modern humans and chimpanzees and in fossil hominins attributed to Australopithecus africanus, Paranthropus robustus/early Homo from Swartkrans, Homo neanderthalensis, and early Homo sapiens. Results show that only recent modern humans have low trabecular density throughout the limb joints. Extinct hominins, including pre-Holocene Homo sapiens, retain the high levels seen in nonhuman primates. Thus, the low trabecular density of the recent modern human skeleton evolved late in our evolutionary history, potentially resulting from increased sedentism and reliance on technological and cultural innovations.


2017 ◽  
Vol 163 (4) ◽  
pp. 806-815 ◽  
Author(s):  
Lei Pan ◽  
John Francis Thackeray ◽  
Jean Dumoncel ◽  
Clément Zanolli ◽  
Anna Oettlé ◽  
...  

2017 ◽  
Author(s):  
Vicente M. Cabrera ◽  
Patricia Marrero ◽  
Khaled K. Abu-Amero ◽  
Jose M. Larruga

ABSTRACTBackgroundAfter three decades of mtDNA studies on human evolution the only incontrovertible main result is the African origin of all extant modern humans. In addition, a southern coastal route has been relentlessly imposed to explain the Eurasian colonization of these African pioneers. Based on the age of macrohaplogroup L3, from which all maternal Eurasian and the majority of African lineages originated, that out-of-Africa event has been dated around 60-70 kya. On the opposite side, we have proposed a northern route through Central Asia across the Levant for that expansion. Consistent with the fossil record, we have dated it around 125 kya. To help bridge differences between the molecular and fossil record ages, in this article we assess the possibility that mtDNA macrohaplogroup L3 matured in Eurasia and returned to Africa as basic L3 lineages around 70 kya.ResultsThe coalescence ages of all Eurasian (M,N) and African L3 lineages, both around 71 kya, are not significantly different. The oldest M and N Eurasian clades are found in southeastern Asia instead near of Africa as expected by the southern route hypothesis. The split of the Y-chromosome composite DE haplogroup is very similar to the age of mtDNA L3. A Eurasian origin and back migration to Africa has been proposed for the African Y-chromosome haplogroup E. Inside Africa, frequency distributions of maternal L3 and paternal E lineages are positively correlated. This correlation is not fully explained by geographic or ethnic affinities. It seems better to be the result of a joint and global replacement of the old autochthonous male and female African lineages by the new Eurasian incomers.ConclusionsThese results are congruent with a model proposing an out-of-Africa of early anatomically modern humans around 125 kya. A return to Africa of Eurasian fully modern humans around 70 kya, and a second Eurasian global expansion by 60 kya. Climatic conditions and the presence of Neanderthals played key roles in these human movements.


2021 ◽  
Vol 8 (6) ◽  
pp. 210529
Author(s):  
C. M. Stimpson ◽  
S. O'Donnell ◽  
N. T. M. Huong ◽  
R. Holmes ◽  
B. Utting ◽  
...  

Studies of archaeological and palaeontological bone assemblages increasingly show that the historical distributions of many mammal species are unrepresentative of their longer-term geographical ranges in the Quaternary. Consequently, the geographical and ecological scope of potential conservation efforts may be inappropriately narrow. Here, we consider a case-in-point, the water deer Hydropotes inermis , which has historical native distributions in eastern China and the Korean peninsula. We present morphological and metric criteria for the taxonomic diagnosis of mandibles and maxillary canine fragments from Hang Thung Binh 1 cave in Tràng An World Heritage Site, which confirm the prehistoric presence of water deer in Vietnam. Dated to between 13 000 and 16 000 years before the present, the specimens are further evidence of a wider Quaternary distribution for these Vulnerable cervids, are valuable additions to a sparse Pleistocene fossil record and confirm water deer as a component of the Upper Pleistocene fauna of northern Vietnam. Palaeoenvironmental proxies suggest that the Tràng An water deer occupied cooler, but not necessarily drier, conditions than today. We consider if the specimens represent extirpated Pleistocene populations or indicate a previously unrecognized, longer-standing southerly distribution with possible implications for the conservation of the species in the future.


Author(s):  
Paul Mellars

This chapter outlines the archaeological evidence for the relative recency and abruptness of appearance of artefacts associated with the creativity of modern humans. It compares the archaeological evidence associated with the appearance of anatomically modern humans in Europe and Africa. In Europe, there is a rapid appearance of new behavioural elements that are often seen to represent a ‘revolution’ in behavioural and perhaps cognitive terms, centred on c.43–35,000 years before present (BP). In Africa, new behavioural elements seem to appear in a more gradual, mosaic fashion but show many of the distinctive features of European Upper Palaeolithic culture by at least 70–80,000 (BP), including seemingly explicit evidence for fully symbolic expression. The central problem remains that of assessing how far these well-documented changes in the archaeological record reflect not only major shifts in behavioural patterns, but also underlying shifts in the cognitive capacities for behaviour, including increasing complexity in the structure of language.


Author(s):  
Bernard Wood

Palaeoanthropologists use many methods to work out the significance of newly discovered fossil evidence, but the first task is to assign hominin fossils to a taxon. After that researchers work out that taxon’s relationships with other fossil and living taxa, and then they infer the behaviours and habitat preferences of the taxon. ‘Fossil hominins: analysis and interpretation’ explains the workings of classification and taxonomy. It describes how whole fossils can be reconstructed from fragments; the difficulties of determining the sex and developmental age of hominin fossil remains; the different interpretations of speciation; how cladistics analysis works; and the gaps and biases in the hominin fossil record.


Author(s):  
Bernard Wood ◽  
Dandy Doherty ◽  
Eve Boyle

The clade (a.k.a. twig of the Tree of Life) that includes modern humans includes all of the extinct species that are judged, on the basis of their morphology or their genotype, to be more closely related to modern humans than to chimpanzees and bonobos. Taxic diversity with respect to the hominin clade refers to evidence that it included more than one species at any one time period in its evolutionary history. The minimum requirement is that a single ancestor-descendant sequence connects modern humans with the hypothetical common ancestor they share with chimpanzees and bonobos. Does the hominin clade include just modern human ancestors or does it also include non-ancestral species that are closely related to modern humans? It has been suggested there is evidence of taxic diversity within the hominin clade back to 4.5 million years ago, but how sound is that evidence? The main factor that would work to overestimate taxic diversity is the tendency for paleoanthropologists to recognize too many taxa among the site collections of hominin fossils. Factors that would work to systematically underestimate taxic diversity include the relative rarity of hominins within fossil faunas, the realities that many parts of the world where hominins could have been living are un- or under-sampled, and that during many periods of human evolutionary history, erosion rather than deposition predominated, thus reducing or eliminating the chance that animals alive during those times would be recorded in the fossil record. Finally, some of the most distinctive parts of an animal (e.g., pelage, vocal tract, scent glands) are not likely to be preserved in the hominin fossil record, which is dominated by fragments of teeth and jaws.


Sign in / Sign up

Export Citation Format

Share Document