Elements of Technology

2019 ◽  
Vol 41 (4) ◽  
pp. 20-22
Author(s):  
Michael Droescher

Abstract There are many ways to look at the periodic table. When Mendeleev established the table, he arranged the elements according to atomic number and chemical properties. Here, we try a different look. We discuss the influence and links of elements on the development of cultures and technologies. Some of the elements have a direct impact on our life: carbon, nitrogen, hydrogen, oxygen and phosphorous are the main building blocks of our organism, besides small amounts of other elements. Many other elements, especially metals, are the base of the development of our social and technological world, due to the availability and/or innovative use of new or already known elements. We will have a look on the relevance and importance of these elements for the development of technologies over the last 10 millennia.

2019 ◽  
Vol 41 (4) ◽  
pp. 34-37
Author(s):  
Suze Kundu

Abstract In today’s periodic table, 118 elements stand side by side, neatly arranged in rows and columns, mapping out their relative size, proudly sharing their family’s traits, and showcasing their relative reactivity and predicted behaviour in different situations. Back in 1869 when Dmitri Mendeleev devised the arrangement of elements we use to this day, there were notable gaps left for elements that had not yet been discovered. As the arrangement of the elements was based on a range of physical and chemical properties, it was easy to predict some of the properties of the missing elements. It was in these gaps that both scientists and artists alike dared to dream about elemental discoveries with both predicted and unpredicted properties. Comic book and science fiction writers in particular had fun postulating some of the possible elements that would give their superheroes the characteristics they required to carry out their tasks. They created fictional elements in place of some of the as yet undiscovered elements, many of which now share properties with elements that exist today.


2017 ◽  
Vol 89 (8) ◽  
pp. 1209-1222 ◽  
Author(s):  
Victor I. Saloutin ◽  
Yulia S. Kudyakova ◽  
Marina V. Goryaeva ◽  
Yanina V. Burgart ◽  
Oleg N. Chupakhin

AbstractThe review focuses on the synthesis and chemical properties of polyfluoroalkylated 2-ethoxymethylene-3-oxo esters. The scope and peculiarities of their use as organic reagents in reactions with various N-, C-, O-, mono- and dinucleophiles are discussed in detail. The high reactivity of such derivatives is employed in the construction of enaminoketone, arene and heterocycle frameworks. Particular attention is paid to applications of these building blocks as chemicals for fine organic synthesis, bioactive compounds and metal complexes synthesis.


Author(s):  
Paul J. Karol

Uranium was Discovered in 1789 by the German chemist Martin Heinrich Klaproth in pitchblende ore from Joachimsthal, a town now in the Czech Republic. Nearly a century later, the Russian chemist Dmitri Mendeleev placed uranium at the end of his periodic table of the chemical elements. A century ago, Moseley used x-ray spectroscopy to set the atomic number of uranium at 92, making it the heaviest element known at the time. This chapter will deal with the quest to explore that limit and heavy and superheavy elements, and provide an update on where continuation of the periodic table is headed and some of the significant changes in its appearance and interpretation that may be necessary. Our use of the term “heavy elements” differs from that of astrophysicists who refer to elements above helium as heavy elements. The meaning of the term “superheavy” element is still not exactly agreed upon and has changed over the past several decades. “Ultraheavy” is occasionally used. Interestingly, there is no formal definition of “periodic table” by the International Union of Pure and Applied Chemistry (IUPAC) in their glossary of definitions: the “Gold Book.” But there are plenty of definitions in the general literature—including Wikipedia, the collaborative, free, internet encyclopedia which calls the “periodic table” a “tabular arrangement of the chemical elements, organized on the basis of their atomic numbers, electron configurations (electron shell model), and recurring chemical properties. Elements are presented in order of increasing atomic number (the number of protons in the nucleus).” IUPAC’s first definition of a “chemical element” is: “A species of atoms; all atoms with the same number of protons in the atomic nucleus.” Their definition of atom: “the smallest particle still characterizing a chemical element. It consists of a nucleus of positive charge (Z is the proton number and e the elementary charge) carrying almost all its mass (more than 99.9%) and Z electrons determining its size.”


RSC Advances ◽  
2018 ◽  
Vol 8 (22) ◽  
pp. 12300-12309 ◽  
Author(s):  
Babak Ashourirad ◽  
Muslum Demir ◽  
Ryon A. Smith ◽  
Ram B. Gupta ◽  
Hani M. El-Kaderi

Zinc chloride activated benzimidazole derived carbons (ZBIDCs) with optimal textural and chemical properties exhibit remarkable and stable performance in supercapacitor applications.


2021 ◽  
Vol 9 (2) ◽  
pp. 14
Author(s):  
Orwa Houshia ◽  
Harbi Daraghmeh ◽  
Naba Abuhafez ◽  
Ahmad Abdelraouf Jrar

The periodic table of chemistry contains all synthetic and naturally occurring elements. The elements are arranged in seven horizontal periods from left to right with increasing atomic number. The periodic table is divided into two groups: metals and nonmetals, within elements moving from left to right, the elements get less metallic, culminating in nonmetals on the far right side of the table. Further, the elements are also arranged in eight vertical columns or groups for those with similar physical and chemical properties. A model equation has been developed based on the 8-group and the 7-periods from which trends of elements has been calculated. Among the trends in the periodic table that were calculated are ionization energy, atomic size and effective nuclear charge. It has been discovered that the calculated theoretical values from the model equation rhyme well with the actual values for each element with few exceptions.


Author(s):  
Eric R. Scerri

The periodic table of elements provides an arrangement of the chemical elements, ordered by their atomic number, electron configuration, and recurring chemical properties. The Periodic Table: A Very Short Introduction considers what led to the table’s construction and shows how the deeper meaning of its structure gradually became apparent with the development of atomic theory and quantum mechanics, which underlies the behaviour of all of the elements and their compounds. This new edition celebrates the completion of the seventh period of the table, with the ratification and naming of elements 113, 115, 117, and 118 as nihonium, moscovium, tennessine, and oganesson, and incorporates recent advances in our understanding of the origin of the elements.


2019 ◽  
Vol 107 (9-11) ◽  
pp. 833-863 ◽  
Author(s):  
Valeria Pershina

AbstractTheoretical chemical studies demonstrated crucial importance of relativistic effects in the physics and chemistry of superheavy elements (SHEs). Performed, with many of them, in a close link to the experimental research, those investigations have shown that relativistic effects determine periodicities in physical and chemical properties of the elements in the chemical groups and rows of the Periodic Table beyond the 6thone. They could, however, also lead to some deviations from the established trends, so that the predictive power of the Periodic Table in this area may be lost. Results of those studies are overviewed here, with comparison to the recent experimental investigations.


2019 ◽  
Vol 91 (12) ◽  
pp. 1921-1928 ◽  
Author(s):  
Mikhail Kurushkin

Abstract The history of chemistry has not once seen representations of the periodic system that have not received proper attention or recognition. The present paper is dedicated to a nearly unknown version of the periodic table published on the occasion of the centenary celebration of Mendeleev’s birth (1934) by V. Romanoff. His periodic table visually merges Werner’s and Janet’s periodic tables and it is essentially the spiral periodic system on a plane. In his 1934 paper, Romanoff was the first one to introduce the idea of the actinide series, a decade before Glenn T. Seaborg, the renowned creator of the actinide concept. As a consequence, another most outstanding thing about Romanoff’s paper occurs towards its very end: he essentially predicted the discovery of elements #106, #111 and #118. He theorized that, had uranium not been the “creative limit”, we would have met element #106, a “legal” member of group 6, element #111, a precious metal, “super-gold” and element #118, a noble gas. In 2019, we take it for granted that elements #106, #111 and #118 indeed exist and they are best known as seaborgium, roentgenium and oganesson. It is fair to say that Romanoff’s success with the prediction of correct placement and chemical properties of seaborgium, roentgenium and oganesson was only made possible due to the introduction of an early version of the actinide series that only had four elements at that time. Sadly, while Professor Romanoff was imprisoned (1938–1943), two new elements, neptunium (element #93) and plutonium (element #94) were discovered. While Professor Romanoff was in exile in Ufa (1943–1953), six further elements were added to the periodic table: americium (element #95), curium (element #96), berkelium (element #97), californium (element #98), einsteinium (element #99) and fermium (element #100). The next year after his death, in 1955, mendelevium (element #101), was discovered. Romanoff’s version of the periodic table is an unparalleled precursor to the contemporary periodic table, and is an example of extraordinary anticipation of the discovery of new chemical elements.


Author(s):  
Meena Kumari ◽  
Suchita Prasad ◽  
Ljiljana Fruk ◽  
Badri Parshad

Hydrogels and nanogels have emerged as promising materials for biomedical applications owing to their large surface area and tunable mechanical and chemical properties. Their large surface area is well suited for bioconjugation, whilst the interior porous network can be utilized for the transport of valuable biomolecules. The use of biocompatible hydrophilic building blocks/linkers for the preparation of hydrogels and nanogels not only avoids undesired side effects within the biological system, but also retains high water content, thereby creating an environment which is very similar to extracellular matrix. Their tunable multivalency and hydrophilicity and excellent biocompatibility, together with ease of functionalization, makes polyglycerol macromonomers well suited for synthesizing cross-linked networks that can be used as extracellular matrix mimics. Here we provide an overview of the synthesis of polyglycerol-based hydrogels and nanogels for various biomedical applications.


2021 ◽  
Vol 2 (3) ◽  
pp. 467-492
Author(s):  
Marta. E. G. Mosquera ◽  
Gerardo Jiménez ◽  
Vanessa Tabernero ◽  
Joan Vinueza-Vaca ◽  
Carlos García-Estrada ◽  
...  

Polymers are essential materials in our daily life. The synthesis of value-added polymers is mainly performed from fossil fuel-derived monomers. However, the adoption of the circular economy model based on the bioeconomy will reduce the dependence on fossil fuels. In this context, biorefineries have emerged to convert biomass into bioenergy and produce high value-added products, including molecules that can be further used as building blocks for the synthesis of biopolymers and bioplastics. The achievement of catalytic systems able to polymerize the natural monomer counterparts, such as terpenes or terpenoids, is still a challenge in the development of polymers with good mechanical, thermal, and chemical properties. This review describes the most common types of bioplastics and biopolymers and focuses specifically on the polymerization of terpenes and terpenoids, which represent a source of promising monomers to create bio-based polymers and copolymers.


Sign in / Sign up

Export Citation Format

Share Document