Viatscheslaw Romanoff: unknown genius of the periodic system

2019 ◽  
Vol 91 (12) ◽  
pp. 1921-1928 ◽  
Author(s):  
Mikhail Kurushkin

Abstract The history of chemistry has not once seen representations of the periodic system that have not received proper attention or recognition. The present paper is dedicated to a nearly unknown version of the periodic table published on the occasion of the centenary celebration of Mendeleev’s birth (1934) by V. Romanoff. His periodic table visually merges Werner’s and Janet’s periodic tables and it is essentially the spiral periodic system on a plane. In his 1934 paper, Romanoff was the first one to introduce the idea of the actinide series, a decade before Glenn T. Seaborg, the renowned creator of the actinide concept. As a consequence, another most outstanding thing about Romanoff’s paper occurs towards its very end: he essentially predicted the discovery of elements #106, #111 and #118. He theorized that, had uranium not been the “creative limit”, we would have met element #106, a “legal” member of group 6, element #111, a precious metal, “super-gold” and element #118, a noble gas. In 2019, we take it for granted that elements #106, #111 and #118 indeed exist and they are best known as seaborgium, roentgenium and oganesson. It is fair to say that Romanoff’s success with the prediction of correct placement and chemical properties of seaborgium, roentgenium and oganesson was only made possible due to the introduction of an early version of the actinide series that only had four elements at that time. Sadly, while Professor Romanoff was imprisoned (1938–1943), two new elements, neptunium (element #93) and plutonium (element #94) were discovered. While Professor Romanoff was in exile in Ufa (1943–1953), six further elements were added to the periodic table: americium (element #95), curium (element #96), berkelium (element #97), californium (element #98), einsteinium (element #99) and fermium (element #100). The next year after his death, in 1955, mendelevium (element #101), was discovered. Romanoff’s version of the periodic table is an unparalleled precursor to the contemporary periodic table, and is an example of extraordinary anticipation of the discovery of new chemical elements.

2011 ◽  
Vol 1 (1) ◽  
pp. 1-5 ◽  
Author(s):  
D.C. Hoffman

AbstractThis year (2009) marks the 140th Anniversary of Mendeleev's original 1869 periodic table of the elements based on atomic weights. It also marks the 175th anniversary of his birth in Tolbosk, Siberia. The history of the development of periodic tables of the chemical elements is briefly reviewed beginning with the presentation by Dmitri Mendeleev and his associate Nikolai Menshutkin of their original 1869 table based on atomic weights. The value, as well as the sometimes negative effects, of periodic tables in guiding the discovery of new elements based on their predicted chemical properties is assessed. It is noteworthy that the element with Z=101 (mendelevium) was identified in 1955 using chemical techniques. The discoverers proposed the name mendelevium to honor the predictive power of the Mendeleev Periodic Table. Mendelevium still remains the heaviest element to have been identified first by chemical rather than nuclear or physical techniques. The question concerning whether there will be a future role for the current form of the periodic table in predicting chemical properties and aid in the identification of elements beyond those currently known is considered.


2019 ◽  
Vol 41 (1) ◽  
pp. 2-5 ◽  
Author(s):  
Jan Reedijk ◽  
Natalia Tarasova

Abstract This year we celebrate the Periodic Table of Chemical Elements in the format proposed by Mendeleev in 1869, and its continued development to this day. This issue of CI describes several aspects of the Periodic Table, its history and celebration, and also addresses the pathways to possible new elements. In this preface we address some highlights of the papers and pay attention to the history of events that have led to IYPT2019.


2018 ◽  
Vol 56 (1) ◽  
pp. 223-276 ◽  
Author(s):  
Beatriz Barbuy ◽  
Cristina Chiappini ◽  
Ortwin Gerhard

The Galactic Bulge can uniquely be studied from large samples of individual stars and is therefore of prime importance for understanding the stellar population structure of bulges in general. Here the observational evidence on the kinematics, chemical composition, and ages of Bulge stellar populations based on photometric and spectroscopic data is reviewed. The bulk of Bulge stars are old and span a metallicity range of −1.5≲[Fe/H]≲+0.5. Stellar populations and chemical properties suggest a star-formation timescale below ∼2 Gyr. The overall Bulge is barred and follows cylindrical rotation, and the more metal-rich stars trace a box/peanut (B/P) structure. Dyna-mical models demonstrate the different spatial and orbital distributions of metal-rich and metal-poor stars. We discuss current Bulge-formation scenarios based on dynamical, chemical, chemodynamical, and cosmological models. Despite impressive progress, we do not yet have a successful fully self-consistent chemodynamical Bulge model in the cosmological framework, and we will also need a more extensive chrono-chemical-kinematic 3D map of stars to better constrain such models.


2019 ◽  
Vol 107 (9-11) ◽  
pp. 803-819
Author(s):  
Yuichiro Nagame

Abstract Recent progress in the production of heavy nuclei far from stability and in the studies of nuclear and chemical properties of heavy actinides is briefly reviewed. Exotic nuclear decay properties including nuclear fission of heavy nuclei, measurements of first ionization potentials of heavy actinides, and redox studies of heavy actinides are described. Brief history of discovery of the transuranium elements is also presented.


1975 ◽  
Vol 1975 (1) ◽  
pp. 29-32 ◽  
Author(s):  
Hans J. Crump-Wiesner ◽  
Allen L. Jennings

ABSTRACT Legislative history of water pollution control has not included detailed scientific definitions of what is meant by the rather inclusive term “oil.” Because of the publicity surrounding spills of crude or petroleum-derived oils, little attention has been focused on non-petroleum oils. Approximately 5% of the oil spills reported to the Environmental Protection Agency are nonpetroleum oils. Their physical and chemical properties and adverse environmental effects are strikingly similar to the behavior of petroleum oil in the aquatic environment. This paper presents a comparative analysis of the properties and effects of petroleum versus nonpetroleum oils. Their similarities prove that these oils should be treated as one entity regardless of their origin. Finally, additional guidelines are presented to provide a more broadly applicable distinction between oil and other hazardous materials for enforcement purposes.


Author(s):  
Matthias Schädel

The quest for superheavy elements (SHEs) is driven by the desire to find and explore one of the extreme limits of existence of matter. These elements exist solely due to their nuclear shell stabilization. All 15 presently ‘known’ SHEs (11 are officially ‘discovered’ and named) up to element 118 are short-lived and are man-made atom-at-a-time in heavy ion induced nuclear reactions. They are identical to the transactinide elements located in the seventh period of the periodic table beginning with rutherfordium (element 104), dubnium (element 105) and seaborgium (element 106) in groups 4, 5 and 6, respectively. Their chemical properties are often surprising and unexpected from simple extrapolations. After hassium (element 108), chemistry has now reached copernicium (element 112) and flerovium (element 114). For the later ones, the focus is on questions of their metallic or possibly noble gas-like character originating from interplay of most pronounced relativistic effects and electron-shell effects. SHEs provide unique opportunities to get insights into the influence of strong relativistic effects on the atomic electrons and to probe ‘relativistically’ influenced chemical properties and the architecture of the periodic table at its farthest reach. In addition, they establish a test bench to challenge the validity and predictive power of modern fully relativistic quantum chemical models.


2021 ◽  
Vol 8 ◽  
Author(s):  
Changsu Cao ◽  
René E. Vernon ◽  
W. H. Eugen Schwarz ◽  
Jun Li

The chemical elements are the “conserved principles” or “kernels” of chemistry that are retained when substances are altered. Comprehensive overviews of the chemistry of the elements and their compounds are needed in chemical science. To this end, a graphical display of the chemical properties of the elements, in the form of a Periodic Table, is the helpful tool. Such tables have been designed with the aim of either classifying real chemical substances or emphasizing formal and aesthetic concepts. Simplified, artistic, or economic tables are relevant to educational and cultural fields, while practicing chemists profit more from “chemical tables of chemical elements.” Such tables should incorporate four aspects: (i) typical valence electron configurations of bonded atoms in chemical compounds (instead of the common but chemically atypical ground states of free atoms in physical vacuum); (ii) at least three basic chemical properties (valence number, size, and energy of the valence shells), their joint variation across the elements showing principal and secondary periodicity; (iii) elements in which the (sp)8, (d)10, and (f)14valence shells become closed and inert under ambient chemical conditions, thereby determining the “fix-points” of chemical periodicity; (iv)peculiar elements at the top and at the bottom of the Periodic Table. While it is essential that Periodic Tables display important trends in element chemistry we need to keep our eyes open for unexpected chemical behavior in ambient, near ambient, or unusual conditions. The combination of experimental data and theoretical insight supports a more nuanced understanding of complex periodic trends and non-periodic phenomena.


2019 ◽  
Vol 41 (4) ◽  
pp. 34-37
Author(s):  
Suze Kundu

Abstract In today’s periodic table, 118 elements stand side by side, neatly arranged in rows and columns, mapping out their relative size, proudly sharing their family’s traits, and showcasing their relative reactivity and predicted behaviour in different situations. Back in 1869 when Dmitri Mendeleev devised the arrangement of elements we use to this day, there were notable gaps left for elements that had not yet been discovered. As the arrangement of the elements was based on a range of physical and chemical properties, it was easy to predict some of the properties of the missing elements. It was in these gaps that both scientists and artists alike dared to dream about elemental discoveries with both predicted and unpredicted properties. Comic book and science fiction writers in particular had fun postulating some of the possible elements that would give their superheroes the characteristics they required to carry out their tasks. They created fictional elements in place of some of the as yet undiscovered elements, many of which now share properties with elements that exist today.


Author(s):  
R. S. Islamov

The paper observes the matter of proper names of chemical elements of the periodic table by D.I. Mendeleev, the history of their origin, and transformation while the morphemic and semantic loaning from Greek and Latin languages. Moreover, the name for this lexis is proposed as stoichonyms. The topic under discussion is actual for chemistry students in classes of English. The paper provides an example of multilingual group of the speakers of Russian, Tajik, and Kyrgyz languages. The special interest is the comparative lexemic analysis of the names of chemical elements in these three languages. By means of it, one can conclude on the students' perception of the scientific lexis in the light of its etymology, on the one hand. On the other hand, one can make an approach to teaching the special lexis not only by language teacher but chemistry as well.


Sign in / Sign up

Export Citation Format

Share Document