scholarly journals Comprehensive characterization of BRCA1 and BRCA2 alterations in circulating tumor DNA and tumor tissue in men with prostate cancer: Implications for clinical care

2017 ◽  
Vol 28 ◽  
pp. v287
Author(s):  
P. Lara ◽  
J. McPherson ◽  
W. Heyer ◽  
R. Hartmaier ◽  
R. Devere White ◽  
...  
2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Matthew H. Larson ◽  
Wenying Pan ◽  
Hyunsung John Kim ◽  
Ruth E. Mauntz ◽  
Sarah M. Stuart ◽  
...  

AbstractCell-free RNA (cfRNA) is a promising analyte for cancer detection. However, a comprehensive assessment of cfRNA in individuals with and without cancer has not been conducted. We perform the first transcriptome-wide characterization of cfRNA in cancer (stage III breast [n = 46], lung [n = 30]) and non-cancer (n = 89) participants from the Circulating Cell-free Genome Atlas (NCT02889978). Of 57,820 annotated genes, 39,564 (68%) are not detected in cfRNA from non-cancer individuals. Within these low-noise regions, we identify tissue- and cancer-specific genes, defined as “dark channel biomarker” (DCB) genes, that are recurrently detected in individuals with cancer. DCB levels in plasma correlate with tumor shedding rate and RNA expression in matched tissue, suggesting that DCBs with high expression in tumor tissue could enhance cancer detection in patients with low levels of circulating tumor DNA. Overall, cfRNA provides a unique opportunity to detect cancer, predict the tumor tissue of origin, and determine the cancer subtype.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Gillian Vandekerkhove ◽  
Jean-Michel Lavoie ◽  
Matti Annala ◽  
Andrew J. Murtha ◽  
Nora Sundahl ◽  
...  

AbstractMolecular stratification can improve the management of advanced cancers, but requires relevant tumor samples. Metastatic urothelial carcinoma (mUC) is poised to benefit given a recent expansion of treatment options and its high genomic heterogeneity. We profile minimally-invasive plasma circulating tumor DNA (ctDNA) samples from 104 mUC patients, and compare to same-patient tumor tissue obtained during invasive surgery. Patient ctDNA abundance is independently prognostic for overall survival in patients initiating first-line systemic therapy. Importantly, ctDNA analysis reproduces the somatic driver genome as described from tissue-based cohorts. Furthermore, mutation concordance between ctDNA and matched tumor tissue is 83.4%, enabling benchmarking of proposed clinical biomarkers. While 90% of mutations are identified across serial ctDNA samples, concordance for serial tumor tissue is significantly lower. Overall, our exploratory analysis demonstrates that genomic profiling of ctDNA in mUC is reliable and practical, and mitigates against disease undersampling inherent to studying archival primary tumor foci. We urge the incorporation of cell-free DNA profiling into molecularly-guided clinical trials for mUC.


BMC Cancer ◽  
2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Stine Karlsen Oversoe ◽  
Michelle Simone Clement ◽  
Britta Weber ◽  
Henning Grønbæk ◽  
Stephen Jacques Hamilton-Dutoit ◽  
...  

Abstract Background and aims Studies suggest that mutations in the CTNNB1 gene are predictive of response to immunotherapy, an emerging therapy for advanced hepatocellular carcinoma (HCC). Analysis of circulating tumor DNA (ctDNA) offers the possibility of serial non-invasive mutational profiling of tumors. Combining tumor tissue and ctDNA analysis may increase the detection rate of mutations. This study aimed to evaluate the frequency of the CTNNB1 p.T41A mutation in ctDNA and tumor samples from HCC patients and to evaluate the concordance rates between plasma and tissue. We further evaluated changes in ctDNA after various HCC treatment modalities and the impact of the CTNNB1 p.T41A mutation on the clinical course of HCC. Methods We used droplet digital PCR to analyze plasma from 95 patients and the corresponding tumor samples from 37 patients during 3 years follow up. Results In tumor tissue samples, the mutation rate was 8.1% (3/37). In ctDNA from HCC patients, the CTNNB1 mutation rate was 9.5% (9/95) in the pre-treatment samples. Adding results from plasma analysis to the subgroup of patients with available tissue samples, the mutation detection rate increased to 13.5% (5/37). There was no difference in overall survival according to CTNNB1 mutational status. Serial testing of ctDNA suggested a possible clonal evolution of HCC or arising multicentric tumors with separate genetic profiles in individual patients. Conclusion Combining analysis of ctDNA and tumor tissue increased the detection rate of CTNNB1 mutation in HCC patients. A liquid biopsy approach may be useful in a tailored therapy of HCC.


2021 ◽  
Vol 39 (6_suppl) ◽  
pp. 25-25
Author(s):  
Hanna Tukachinsky ◽  
Russell Madison ◽  
Jon Chung ◽  
Lucas Dennis ◽  
Bernard Fendler ◽  
...  

25 Background: Comprehensive genomic profiling (CGP) by next-generation sequencing (NGS) of circulating tumor DNA (ctDNA) from plasma provides a minimally invasive method to identify targetable genomic alterations (GAs) and resistance mechanisms in patients with metastatic castration-resistant prostate cancer (mCRPC). The circulating tumor fraction in patients with mCRPC and the clinical validity of GAs detected in plasma remain unknown. We evaluated the landscape of GAs using ctDNA-based CGP and assessed concordance with tissue-based CGP. Methods: Plasma from 3,334 patients with advanced prostate cancer (including 1,674 mCRPC screening samples from the TRITON2/3 trials and 1,660 samples from routine clinical CGP) was analyzed using hybrid-capture-based gene panel NGS assays. Results were compared with CGP of 2,006 metastatic prostate cancer tissue biopsies. Concordance was evaluated in 837 patients with both tissue (archival or contemporaneous) and plasma NGS results. Results: 3,127 patients [94%] had detectable ctDNA. BRCA1/2 were mutated in 295 patients [8.8%]. In concordance analysis, 72/837 [8.6%] patients had BRCA1/2 mutations detected in tissue, 67 [93%] of whom were also identified by ctDNA, and 20 patients were identified using ctDNA but not tissue [23% of all patients identified using ctDNA]. ctDNA detected subclonal BRCA1/2 reversions in 10 of 1,660 [0.6%] routine clinical CGP samples. AR alterations, including amplifications and hotspot mutations, which were detected in 940/2,213 patients [42%]. Rare AR compound mutations, rearrangements, and novel in-frame deletions were identified. Altered pathways included PI3K/AKT/mTOR [14%], WNT/β-catenin [17%], and RAS/RAF/MEK [5%]. Microsatellite instability was detected in 31/2,213 patients [1.4%]. Conclusions: In the largest study of mCRPC plasma samples conducted to date, CGP of ctDNA recapitulated the genomic landscape detected in tissue biopsies, with a high level of agreement in detection of BRCA1/2 alterations. It also identified patients who may have gained somatic BRCA1/2 alterations since archival tissue was collected. ctDNA detected more acquired resistance GAs than tissue, including novel AR-activating variants. The large percentage of patients with rich genomic signal from ctDNA, and the sensitive, specific detection of BRCA1/2 alterations position liquid biopsy as a compelling clinical complement to tissue CGP for patients with mCRPC.


2020 ◽  
Vol 22 (Supplement_2) ◽  
pp. ii165-ii165
Author(s):  
Hao Duan ◽  
Zhenqiang He ◽  
Zhenghe Chen ◽  
Yonggao Mou

Abstract Cerebrospinal fluid (CSF) has been demonstrated as a better source of circulating tumor DNA (ctDNA) than plasma for brain tumors. However, it is unclear whether whole exome sequencing (WES) is qualified for detection of ctDNA in CSF. The aim of this study was to determine if assessment of ctDNA in CSF by WES is a feasible approach to detect genomic alterations of glioblastoma. CSFs of ten glioblastoma patients were collected pre-operatively at the Department of Neurosurgery, Sun Yat-sen University Cancer Center. ctDNA in CSF and genome DNA in the resected tumor were extracted and subjected to WES. The identified glioblastoma-associated mutations from ctDNA in CSF and genome DNA in the resected tumor were compared. Due to the ctDNA in CSF was unqualified for exome sequencing for one patient, nine patients were included into the final analysis. More glioblastoma-associated mutations tended to be detected in CSF comparing with the corresponding tumor tissue samples (3.56±0.75 vs. 2.22±0.32, P=0.097), while the statistical significance was limited by the small sample size. The average mutation frequencies were similar in CSF and tumor tissue samples (74.12% ± 6.03% vs. 73.83% ± 5.95%, P = 0.924). The R132H mutation of isocitrate dehydrogenase 1 and the G34V mutation of H3F3A which had been reported in the pathological diagnoses were also detected from ctDNA in CSF by WES. Patients who received temozolomide chemotherapy previously or those whose tumor involved subventricular zone tended to harbor more mutations in their CSF. Assessment of ctDNA in CSF by WES is a feasible approach to detect genomic alterations of glioblastoma, which may provide useful information for the decision of treatment strategy.


Medicine ◽  
2020 ◽  
Vol 99 (33) ◽  
pp. e21196
Author(s):  
Yin Kang ◽  
Xiaohua Lin ◽  
Dezhi Kang

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
T. J. Ettrich ◽  
D. Schwerdel ◽  
A. Dolnik ◽  
F. Beuter ◽  
T. J. Blätte ◽  
...  

Abstract Diagnosis of Cholangiocarcinoma (CCA) is difficult, thus a noninvasive approach towards (i) assessing and (ii) monitoring the tumor-specific mutational profile is desirable to improve diagnosis and tailor treatment. Tumor tissue and corresponding ctDNA samples were collected from patients with CCA prior to and during chemotherapy and were subjected to deep sequencing of 15 genes frequently mutated in CCA. A set of ctDNA samples was also submitted for 710 gene oncopanel sequencing to identify progression signatures. The blood/tissue concordance was 74% overall and 92% for intrahepatic tumors only. Variant allele frequency (VAF) in ctDNA correlated with tumor load and in the group of intrahepatic CCA with PFS. 63% of therapy naive patients had their mutational profile changed during chemotherapy. A set of 76 potential progression driver genes was identified among 710 candidates. The molecular landscape of CCA is accessible via ctDNA. This could be helpful to facilitate diagnosis and personalize and adapt therapeutic strategies.


Sign in / Sign up

Export Citation Format

Share Document