scholarly journals Assessment of Heat Stress Exposure among Construction Workers in the Hot Desert Climate of Saudi Arabia

2019 ◽  
Vol 63 (5) ◽  
pp. 505-520 ◽  
Author(s):  
Mohammed Al-Bouwarthan ◽  
Margaret M Quinn ◽  
David Kriebel ◽  
David H Wegman

Abstract Objectives Excessive heat exposure poses significant risks to workers in hot climates. This study assessed the intensity and duration of heat stress exposure among workers performing residential construction in southeastern Saudi Arabia (SA) during the summer, June–September 2016. Objectives were to: identify work factors related to heat stress exposure; measure environmental heat exposure at the construction sites; assess the heat stress risk among workers using the wet bulb globe temperature (WBGT) index; and determine if temperature-humidity indices can be appropriate alternatives to WBGT for managing heat stress risk at the construction sites. Methods Worksite walkthrough surveys and environmental monitoring were performed, indoors and outdoors, at 10 construction sites in Al-Ahsa Province. A heat stress exposure assessment was conducted according to the American Conference of Governmental Industrial Hygienists (ACGIH®) guidelines, which uses the WBGT index. WBGT measurements from two instruments were compared. Alternative heat stress indices were compared to the WBGT: the heat index (HI) and humidex (HD) index. Results Construction workers were exposed to excessive heat stress, indoors and outdoors over a large part of the work day. Complying with a midday outdoor work ban (12–3 p.m.) was not effective in reducing heat stress risk. The highest intensity of exposure was outdoors from 9 a.m. to 12 p.m.; a period identified with the highest hourly mean WBGT values (31–33°C) and the least allowable working time according to ACGIH® guidelines. Comparison of the alternative indices showed that the HI is more reliable than the HD as a surrogate for the WBGT index in the climate studied. Conclusion The extreme heat exposure represents a serious risk. The severity of heat stress and its impact are projected to increase due to climate change, emphasizing the need for immediate improvement of the current required protective measures and the development of occupational heat stress exposure guidelines in SA.

2020 ◽  
Vol 64 (5) ◽  
pp. 522-535 ◽  
Author(s):  
Mohammed Al-Bouwarthan ◽  
Margaret M Quinn ◽  
David Kriebel ◽  
David H Wegman

Abstract Objectives Assess the impact of summer heat exposure (June–September) on residential construction workers in Al-Ahsa, Saudi Arabia by evaluating (i) heart rate (HR) responses, hydration status, and physical workload among workers in indoor and outdoor construction settings, (ii) factors related to physiological responses to work in hot conditions, and (iii) how well wet-bulb globe temperature-based occupational exposure limits (WBGTOELs) predict measures of heat strain. Methods Twenty-three construction workers (plasterers, tilers, and laborers) contributed 260 person-days of monitoring. Workload energy expenditure, HR, fluid intake, and pre- and postshift urine specific gravity (USG) were measured. Indoor and outdoor heat exposures (WBGT) were measured continuously and a WBGTOEL was calculated. The effects of heat exposure and workload on heart rate reserve (HRR), a measure of cardiovascular strain, were examined with linear mixed models. A metric called ‘heat stress exceedance’ (HSE) was constructed to summarize whether the environmental heat exposure (WBGT) exceeded the heat stress exposure limit (WBGTOEL). The sensitivity and specificity of the HSE as a predictor of cardiovascular strain (HRR ≥30%) were determined. Results The WBGTOEL was exceeded frequently, on 63 person-days indoors (44%) and 91(78%) outdoors. High-risk HRR occurred on 26 and 36 person-days indoors and outdoors, respectively. The HSE metric showed higher sensitivity for HRR ≥30% outdoors (89%) than indoors (58%) and greater specificity indoors (59%) than outdoors (27%). Workload intensity was generally moderate, with light intensity work more common outdoors. The ability to self-pace work was associated with a lower frequency of HRR ≥30%. USG concentrations indicated that workers began and ended their shifts dehydrated (USG ≥1.020). Conclusions Construction work where WBGTOEL is commonly exceeded poses health risks. The ability of workers to self-pace may help reduce risks.


Abstract Extreme heat is annually the deadliest weather hazard in the U.S. and is strongly amplified by climate change. In Florida, summer heat waves have increased in frequency and duration, exacerbating negative human health impacts on a state with a substantial older population and industries (e.g., agriculture) that require frequent outdoor work. However, the combined impacts of temperature and humidity (heat stress) have not been previously investigated. For eight Florida cities, this study constructs summer climatologies and trend analyses (1950–2020) of two heat stress metrics: heat index (HI) and wet bulb globe temperature (WBGT). While both incorporate temperature and humidity, WBGT also includes wind and solar radiation, and is a more comprehensive measure of heat stress on the human body. With minor exceptions, results show increases in average summer daily maximum, mean, and minimum HI and WBGT throughout Florida. Daily minimum HI and WBGT exhibit statistically significant increases at all eight stations, emphasizing a hazardous rise in nighttime heat stress. Corresponding to other recent studies, HI and WBGT increases are largest in coastal subtropical locations in Central and South Florida (i.e., Daytona Beach, Tampa, Miami, Key West), but exhibit no conclusive relationship with urbanization changes. Finally, danger (103–124°F) HI and high (> 88°F) WBGT summer days exhibit significant frequency increases across the state. Especially at coastal locations in the Florida Peninsula and Keys, danger HI and high WBGT days now account for > 20% of total summer days, emphasizing a substantial escalation in heat stress, particularly since 2000.


2018 ◽  
Vol 40 ◽  
pp. 9
Author(s):  
Osvaldo Borges Pinto Junior ◽  
Sérgio Wagner Gripp Silveira ◽  
Carlo Ralph De Musis ◽  
Luiz Annunciação ◽  
Osvaldo Alves Pereira

In this study, maps of the estimated heat index for a preservation area in the city of Cuiabá, Mato Grosso, Brazil, were constructed using temperature and relative humidity gradients. Understanding microclimate variable behavior is useful for explaining the relationship between urban sprawl and increased environmental distress. The implementation and preservation of green areas is one way to mitigate the environmental impacts of human activities. Urban parks are one common type of green area in cities. According to ISO 7243, heat exposure can be assessed using the Wet Bulb Globe Temperature (WBGT). This study used multivariate statistical techniques and ordinary kriging to produce a WBGT map of the park during the dry and rainy seasons. Places with heat or freshness islands were identified. Locations along hiking trails and areas with exercise equipment were analyzed for WBGT tendencies in order to propose precautionary heat exposure measures.


2017 ◽  
Vol 52 (12) ◽  
pp. 1161-1167 ◽  
Author(s):  
Earl Cooper ◽  
Andrew Grundstein ◽  
Adam Rosen ◽  
Jessica Miles ◽  
Jupil Ko ◽  
...  

Context:  Wet bulb globe temperature (WBGT) is the gold standard for assessing environmental heat stress during physical activity. Many manufacturers of commercially available instruments fail to report WBGT accuracy. Objective:  To determine the accuracy of several commercially available WBGT monitors compared with a standardized reference device. Design:  Observational study. Setting:  Field test. Patients or Other Participants:  Six commercially available WBGT devices. Main Outcome Measure(s):  Data were recorded for 3 sessions (1 in the morning and 2 in the afternoon) at 2-minute intervals for at least 2 hours. Mean absolute error (MAE), root mean square error (RMSE), mean bias error (MBE), and the Pearson correlation coefficient (r) were calculated to determine instrument performance compared with the reference unit. Results:  The QUESTemp° 34 (MAE = 0.24°C, RMSE = 0.44°C, MBE = –0.64%) and Extech HT30 Heat Stress Wet Bulb Globe Temperature Meter (Extech; MAE = 0.61°C, RMSE = 0.79°C, MBE = 0.44%) demonstrated the least error in relation to the reference standard, whereas the General WBGT8778 Heat Index Checker (General; MAE = 1.18°C, RMSE = 1.34°C, MBE = 4.25%) performed the poorest. The QUESTemp° 34 and Kestrel 4400 Heat Stress Tracker units provided conservative measurements that slightly overestimated the WBGT provided by the reference unit. Finally, instruments using the psychrometric wet bulb temperature (General, REED Heat Index WBGT Meter, and WBGT-103 Heat Stroke Checker) tended to underestimate the WBGT, and the resulting values more frequently fell into WBGT-based activity categories with fewer restrictions as defined by the American College of Sports Medicine. Conclusions:  The QUESTemp° 34, followed by the Extech, had the smallest error compared with the reference unit. Moreover, the QUESTemp° 34, Extech, and Kestrel units appeared to offer conservative yet accurate assessments of the WBGT, potentially minimizing the risk of allowing physical activity to continue in stressful heat environments. Instruments using the psychrometric wet bulb temperature tended to underestimate WBGT under low wind-speed conditions. Accurate WBGT interpretations are important to enable clinicians to guide activities in hot and humid weather conditions.


2018 ◽  
Vol 67 (1) ◽  
pp. 18-26 ◽  
Author(s):  
Shirish Ashtekar ◽  
SukhDev Mishra ◽  
Vishal Kapadia ◽  
Pranab Nag ◽  
Gyanendra Singh

Construction workers are at high risk of heat-related illnesses during summer months in India. The personal cooling garment (PCG) is a microclimate assistive device that provides protection from heat stress. The applicability and efficacy of wearing PCG for the physiological and subjective responses were tested on 29 healthy construction workers at actual field worksites. During the test, the climatic conditions were 103.64 ± 38.3°F dry bulb temperature, 41.2 ± 13.4% relative humidity, and wet bulb globe temperature 91.43 ± 39.92°F. Mean weighted skin temperature was significantly lowered by 38.66 ± 33.98°F when wearing PCG as compared with wearing habitual clothing (HC), 32.36 ± 33.44°F ( p < .05). Mean sweat loss was also significantly lower when wearing PCG: 0.365 ± 0.257 kg as compared with wearing HC: 0.658 ± 0.342 kg ( p < .05). Heart rate, along with back and chest skin temperatures were significantly reduced with wearing PCG. The present study suggests that PCG provides an affordable way of alleviating the discomfort and physiological strain caused by environmental heat exposure.


Author(s):  
Annkatrin Burgstall ◽  
Ana Casanueva ◽  
Sven Kotlarski ◽  
Cornelia Schwierz

High temperatures lead to heat-related human stress and an increased mortality risk. To quantify heat discomfort and the relevant dangers, heat stress indices combine different meteorological variables such as temperature, relative humidity, radiation and wind speed. In this paper, a set of widely-used heat stress indices is analyzed and compared to the heat index currently used to issue official heat warnings in Switzerland, considering 28 Swiss weather stations for the years 1981–2017. We investigate how well warnings based on the heat index match warning days and warning periods that are calculated from alternative heat stress indices. The latter might allow for more flexibility in terms of specific warning demands and impact-based warnings. It is shown that the percentage of alternative warnings that match the official warnings varies among indices. Considering the heat index as reference, the simplified wet bulb globe temperature performs well and has some further advantages such as no lower bound and allowing for the calculation of climatological values. Yet, other indices (e.g., with higher dependencies on humidity) can have some added value, too. Thus, regardless of the performance in terms of matches, the optimal index to use strongly depends on the purpose of the warning.


Author(s):  
Francesco Chirico ◽  
Nicola Magnavita

In their review, Kownacki et al. showed some practical and easy to use workplace heat indices that are useful for indoor environments, namely the “Wet Bulb Globe Temperature” (WBGT), the “Predicted Heat Strain” (PHS) model, the “Thermal Work Limit” (TWL), the “Equivalent Temperature” (ET) and the thermal comfort index “PMV/PPD”. In this letter, the authors explain why the modified PMV/PPD method together with the indices combining temperature with humidity, such as the “Humidex Index” and the “Heat Index”, could be a more feasible and useful tool for evaluating potential thermal stress in indoor environments for both the occupational and general population.


Author(s):  
Che Mohammad Nizam ◽  
Ahmad Rasdan Ismail ◽  
Norlini Husshin

Global average temperature has increase 0.2°C in the past 10 years. Furthermore, several studies have predicted that the temperature will keep increasing due to lack of effort in restricting carbon emission. Therefore, the objective of this review is to examine the impact of heat stress towards construction workers productivities and health and also assess the risk of exposure. Literature review was done through scoping method on major journal database and Google Scholar. Major heat stress models are Heat Index, Wet bulb globe temperature and Thermal Work Limit. On the other hands, there are more complex heat stress model that incorporate complex data measurement, such as Predicted Heat Strain endorsed by ISO 7933:2004. Several studies have been conducted based on these heat stress model. Findings of these studies shown that hot and humid countries, such India, China, Hong Kong, Thailand, Japan, Iran, Saudi Arabia, Egypt, United Arab Emirates, and Australia WBGT level are at least 28°C, which is beyond safe level for medium and heavy construction work. Productivities were estimated to decline up to 2% for every 1°C increase in temperature above safe WBGT level. In extremely high temperature environment, productivities can decrease in the range of 48% - 94%. Heat stress negative side effect on health include minor heat related illness such as thirst, fatigue, headache, dehydration, vertigo, nausea and muscle pain.


Sign in / Sign up

Export Citation Format

Share Document