Differential responses of the sunn4 and rdn1-1 super-nodulation mutants of Medicago truncatula to elevated atmospheric CO2

2021 ◽  
Author(s):  
Yunfa Qiao ◽  
Shujie Miao ◽  
Jian Jin ◽  
Ulrike Mathesius ◽  
Caixian Tang

Abstract Background and Aims Nitrogen fixation in legumes requires tight control of carbon and nitrogen balance. Thus, legumes control nodule numbers via an autoregulation mechanism. ‘Autoregulation of nodulation’ mutants super-nodulate and are thought to be carbon-limited due to the high carbon-sink strength of excessive nodules. This study aimed to examine the effect of increasing carbon supply on the performance of super-nodulation mutants. Methods We compared the responses of Medicago truncatula super-nodulation mutants (sunn-4 and rdn1-1) and wild type to five CO2 levels (300-850 μmol mol -1). Nodule formation and N2 fixation were assessed in soil-grown plants at 18 and 42 days after sowing. Key results Shoot and root biomass, nodule number and biomass, nitrogenase activity and fixed-N per plant of all genotypes increased with increasing CO2 concentration and reached the maximum around 700 μmol mol -1. While the sunn-4 mutant showed strong growth-retardation compared to wild-type plants, elevated CO2 increased shoot biomass and total N content of rdn1-1 mutant up to two-fold. This was accompanied by a four-fold increase in nitrogen fixation capacity in the rdn1-1 mutant. Conclusions These results suggest that the super-nodulation phenotype per se did not limit growth. The additional nitrogen fixation capacity of the rdn1-1 mutant may enhance the benefit of elevated CO2 on plant growth and N2 fixation.

Genes ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 988
Author(s):  
Kerstin Gühl ◽  
Rens Holmer ◽  
Ting Ting Xiao ◽  
Defeng Shen ◽  
Titis A. K. Wardhani ◽  
...  

Nitrogen fixation by rhizobia is a highly energy-demanding process. Therefore, nodule initiation in legumes is tightly regulated. Environmental nitrate is a potent inhibitor of nodulation. However, the precise mechanism by which this agent (co)regulates the inhibition of nodulation is not fully understood. Here, we demonstrate that in Medicago truncatula the lipo-chitooligosaccharide-induced accumulation of cytokinins is reduced in response to the application of exogenous nitrate. Under permissive nitrate conditions, perception of rhizobia-secreted signalling molecules leads to an increase in the level of four cytokinins (i.e., iP, iPR, tZ, and tZR). However, under high-nitrate conditions, this increase in cytokinins is reduced. The ethylene-insensitive mutant Mtein2/sickle, as well as wild-type plants grown in the presence of the ethylene biosynthesis inhibitor 2-aminoethoxyvinyl glycine (AVG), is resistant to the inhibition of nodulation by nitrate. This demonstrates that ethylene biosynthesis and perception are required to inhibit nodule organogenesis under high-nitrate conditions.


2014 ◽  
Vol 141 (2) ◽  
pp. 375-383 ◽  
Author(s):  
Saif-Allah Chihaoui ◽  
Naceur Djébali ◽  
Moncef Mrabet ◽  
Fathi Barhoumi ◽  
Ridha Mhamdi ◽  
...  

Plants ◽  
2020 ◽  
Vol 9 (11) ◽  
pp. 1505 ◽  
Author(s):  
Christian A. Huynh ◽  
Frédérique C. Guinel

E107 and E132 are pea mutants that nodulate poorly. Because they have a shoot-controlled nodulation phenotype, we asked if their mutated genes were implicated in the autoregulation of nodulation (AON), a mechanism which consists of two systemic circuits, the positive CEP/CRA2 and the negative CLE/SUNN, coordinated via NIN and miR2111. We further characterized the mutants’ phenotype by studying nodule distribution and nodulation efficiency. E107 was similar to wild-type (WT) in its nodule distribution, but E132 had an extended nodulation zone with nodules forming distally on its lateral roots. Moreover, we tested whether their shoots produced a compound inhibitory to nodulation. We made ethyl-acetate extracts of roots and shoots of both mutants and WT, which we applied to rhizobia-inoculated WT seedlings and to pure rhizobial cultures. Whereas free-living bacteria were unaffected by any of the extracts, WT treated with shoot extracts from either inoculated mutant had fewer nodules than that of control. E107 and E132 shoot extracts led to a 50% and a 35% reduction in nodule number, respectively. We propose that E107 and E132 belong to a new sub-class of AON mutants, i.e., hypo-nodulators, and that their respective gene products are acting in the AON descending branch, upstream of TML signaling.


Author(s):  
X. X. Wang ◽  
F. . Gao ◽  
S. P. Yang ◽  
J. Y. Gai ◽  
Y. L. Zhu

The StP5CS (GenBank accession number: JN606861) T6 homozygous transgenic lines (HTLs) of vegetable soybean [Glycine max (L.) Merrill] were grown using vermiculite pot culture to determine whether StP5CS overexpression would enhance nodulation and symbiotic nitrogen fixation (SNF) in two T6 HTLs (17W-1, 17W-2) under drought conditions. The growth performance, nodule development and seed weight of T6 HTLs were significantly better than those of wild type (WT) plants. The proline levels in various tissues of T6 HTLs were higher than WT plants. The concentrations of total ureide, total N, leghemoglobin (Lb) and the activity of glutamine synthetase (GS, EC 6.3.1.2) in the T6 HTLs were significantly increased. Moreover, the relative expression levels of five key nodulation- and SNF-associated genes (i.e., GmENOD40-1, GmENOD40-2, GmLba, GmGS1â1 and GmGS1â2) were significantly higher in T6 HTLs. In conclusion, overexpression of StP5CS enhances nodulation and SNF in transgenic vegetable soybean under drought stress conditions


2019 ◽  
Vol 32 (6) ◽  
pp. 717-728 ◽  
Author(s):  
Kathrin Wippel ◽  
Sharon R. Long

Host specificity in the root-nodule symbiosis between legumes and rhizobia is crucial for the establishment of a successful interaction and ammonia provision to the plant. The specificity is mediated by plant-bacterial signal exchange during early stages of interaction. We observed that a Sinorhizobium meliloti mutant ∆relA, which is deficient in initiating the bacterial stringent response, fails to nodulate Medicago sativa (alfalfa) but successfully infects Medicago truncatula. We used biochemical, histological, transcriptomic, and imaging approaches to compare the behavior of the S. meliloti ∆relA mutant and wild type (WT) on the two plant hosts. ∆relA performed almost WT-like on M. truncatula, except for reduced nitrogen-fixation capacity and a disorganized positioning of bacteroids within nodule cells. In contrast, ∆relA showed impaired root colonization on alfalfa and failed to infect nodule primordia. Global transcriptome analyses of ∆relA cells treated with the alfalfa flavonoid luteolin and of mature nodules induced by the mutant on M. truncatula revealed normal nod gene expression but overexpression of exopolysaccharide biosynthesis genes and a slight suppression of plant defense-like reactions. Many RelA-dependent transcripts overlap with the hypo-osmolarity–related FeuP regulon or are characteristic of stress responses. Based on our findings, we suggest that RelA is not essential until the late stages of symbiosis with M. truncatula, in which it may be involved in processes that optimize nitrogen fixation.


1970 ◽  
Vol 37 (2) ◽  
pp. 183-188 ◽  
Author(s):  
ZN Tahmida Begum ◽  
R Mandal ◽  
Farzana Binta Amin

Quantification of cyanobacterial population and nitrogen fixation of 18 heterocystous cyanobacteria isolated from rice fields soils of 11 districts of Bangladesh have been studied. The taxa recorded were, namely Nostoc linckia, N. carneum, N. ellipsosporum, N. piscinale, Anabaena oryzae, Scytonema mirabile, Calothrix marchica and Hapalosiphon welwetschii. The number of cyanobacterial population varied significantly ranging from 14.6 × 104 to 141.0 × 104/g soil. N2-fixation of Nostoc linckia isolated from rice fields of Dhaka and Brahmanbaria ranged from 1.84 to 8.13 mg N 50/ml. However, the potentiality of other species was more or less similar. Single correlation study suggests that quantitative variation in cyanobacterial population was significantly related positively to soil reaction, available P and available S and negatively to total N content of soil. However, multiple correlations reflects that variation of cyanobacterial population was due to cumulative contribution of all the variables.  Key words: Cyanobacteria, Quantification, N2-fixation, Rice field soil doi:10.3329/bjb.v37i2.1728 Bangladesh J. Bot. 37(2): 183-188, 2008 (December)


2021 ◽  
Vol 22 (11) ◽  
pp. 5628
Author(s):  
Valquíria Campos Alencar ◽  
Juliana de Fátima dos Santos Silva ◽  
Renata Ozelami Vilas Boas ◽  
Vinícius Manganaro Farnézio ◽  
Yara N. L. F. de Maria ◽  
...  

Autoinducer 2 (or AI-2) is one of the molecules used by bacteria to trigger the Quorum Sensing (QS) response, which activates expression of genes involved in a series of alternative mechanisms, when cells reach high population densities (including bioluminescence, motility, biofilm formation, stress resistance, and production of public goods, or pathogenicity factors, among others). Contrary to most autoinducers, AI-2 can induce QS responses in both Gram-negative and Gram-positive bacteria, and has been suggested to constitute a trans-specific system of bacterial communication, capable of affecting even bacteria that cannot produce this autoinducer. In this work, we demonstrate that the ethanologenic Gram-negative bacterium Zymomonas mobilis (a non-AI-2 producer) responds to exogenous AI-2 by modulating expression of genes involved in mechanisms typically associated with QS in other bacteria, such as motility, DNA repair, and nitrogen fixation. Interestingly, the metabolism of AI-2-induced Z. mobilis cells seems to favor ethanol production over biomass accumulation, probably as an adaptation to the high-energy demand of N2 fixation. This opens the possibility of employing AI-2 during the industrial production of second-generation ethanol, as a way to boost N2 fixation by these bacteria, which could reduce costs associated with the use of nitrogen-based fertilizers, without compromising ethanol production in industrial plants.


1999 ◽  
Vol 26 (8) ◽  
pp. 737 ◽  
Author(s):  
Marcus Schortemeyer ◽  
Owen K. Atkin ◽  
Nola McFarlane ◽  
John R. Evans

The interactive effects of nitrate supply and atmospheric CO2 concentration on growth, N2 fixation, dry matter and nitrogen partitioning in the leguminous tree Acacia melanoxylon R.Br. were studied. Seedlings were grown hydroponically in controlled-environment cabinets for 5 weeks at seven 15N-labelled nitrate levels, ranging from 3 to 6400 mmol m–3. Plants were exposed to ambient (~350 µmol mol–1) or elevated (~700 µmol mol–1) atmospheric CO2 for 6 weeks. Total plant dry mass increased strongly with nitrate supply. The proportion of nitrogen derived from air decreased with increasing nitrate supply. Plants grown under either ambient or elevated CO2 fixed the same amount of nitrogen per unit nodule dry mass (16.6 mmol N per g nodule dry mass) regardless of the nitrogen treatment. CO2 concentration had no effect on the relative contribution of N2 fixation to the nitrogen yield of plants. Plants grown with ≥50 mmol m–3 N and elevated CO2 had approximately twice the dry mass of those grown with ambient CO2 after 42 days. The rates of net CO2 assimilation under growth conditions were higher per unit leaf area for plants grown under elevated CO2. Elevated CO2 also decreased specific foliage area, due to an increase in foliage thickness and density. Dry matter partitioning between plant organs was affected by ontogeny and nitrogen status of the plants, but not by CO2 concentration. In contrast, plants grown under elevated CO2 partitioned more of their nitrogen to roots. This could be attributed to reduced nitrogen concentrations in foliage grown under elevated CO2.


Genome ◽  
1989 ◽  
Vol 31 (1) ◽  
pp. 354-360 ◽  
Author(s):  
San Chiun Shen ◽  
Shui Ping Wang ◽  
Guan Qiao Yu ◽  
Jia Bi Zhu

Genes that specify nodulation (nod genes) are only active in the free-living rhizobia or in the nodule initiation state of rhizobia. As soon as the repression of nod genes occurs in the bacteroids of the nodule, nifA is induced, while ntrC is inactivated and thus the nifA-mediated nif/fix genes are turned on. Limitation of available oxygen brings about the induction of nifA, which reflects the actual status of nif/fix gene activities in symbiotic state of rhizobia. Oxygen thus appears to be a major symbiotic signal to the expression of bacteroid nif/fix genes. Mutation of nifA or shortage of nifA product in wild-type rhizobia caused by the inhibition of multicopy nifH/fixA promoters leads to an abnormal development of nodules and premature degradation of bacteroids in nodules.Key words: nitrogen fixation, nodulation, nif/fix regulation, nifA mutant.


Sign in / Sign up

Export Citation Format

Share Document