scholarly journals Difference between emergent aquatic and terrestrial monocotyledonous herbs in relation to the coordination of leaf stomata with vein traits

AoB Plants ◽  
2020 ◽  
Vol 12 (5) ◽  
Author(s):  
Wanli Zhao ◽  
Peili Fu ◽  
Guolan Liu ◽  
Ping Zhao

Abstract Emergent aquatic plants mostly occur in shallow waters and root in bottom substrates, but their leaves emerge from the water surface and are thus exposed to air, similar to the leaves of terrestrial plants. Previous studies have found coordination between leaf water supply and demand in terrestrial plants; however, whether such a coordination exists in emergent aquatic plants remains unknown. In this study, we analysed leaf veins and stomatal characteristics of 14 emergent aquatic and 13 terrestrial monocotyledonous herb species (EMH and TMH), with 5 EMH and 8 TMH belonging to Poaceae. We found that EMH had significantly higher mean leaf area, leaf thickness, stomatal density, stomatal number per vein length and major vein diameter, but lower mean major vein length per area (VLA) and total VLA than TMH. There was no significant difference in stomatal length, minor VLA and minor vein diameter between the two groups. Stomatal density and total VLA were positively correlated among the EMH, TMH, as well as the 8 Poaceae TMH species, but this correlation became non-significant when data from both the groups were pooled. Our results showed that the differences in water supply between emergent aquatic and terrestrial plants modify the coordination of their leaf veins and stomatal traits.

2016 ◽  
Vol 214 (1) ◽  
pp. 473-486 ◽  
Author(s):  
Julio V. Schneider ◽  
Jörg Habersetzer ◽  
Renate Rabenstein ◽  
Jens Wesenberg ◽  
Karsten Wesche ◽  
...  

2020 ◽  
Vol 47 (10) ◽  
pp. 904 ◽  
Author(s):  
Yin Wen ◽  
Wan-li Zhao ◽  
Kun-fang Cao

Coordination between the density of veins (water supply) and stomata (demand for water) has been found in the leaves of modern angiosperms and also in ferns. This suggests that this coordinated development is not a unique adaptation of derived angiosperms that enables their high productivity. To test this, we compiled leaf vein and stomatal density data from 520 land vascular plant species including derived angiosperms, basal angiosperms, gymnosperms and ferns. We found global coordination across vascular land plants, although the relationships were not significant in gymnosperms and vessel-less angiosperms. By comparing the evolution of xylem conduit elements with variation in the density of veins and stomata and theoretical stomatal conductance among plant lineages, we found that the physiological advantage of modern angiosperms is associated with the emergence of xylem with low intraconduit resistance and leaves with high vein and stomata densities. Thus our results indicate two major events associated with surges in xylem hydraulic capacity in angiosperms: (1) the origin of vessels and (2) the emergence of vessels with simple perforation plates, which diminished physical limitations on stomatal conductance. These evolutionary innovations may have enabled derived angiosperms to be more productive and adaptive to the changing climate.


Land ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 357
Author(s):  
Jong Kyu Lee ◽  
Myeong Ja Kwak ◽  
Sang Hee Park ◽  
Han Dong Kim ◽  
Yea Ji Lim ◽  
...  

Plants are affected by the features of their surrounding environment, such as climate change and air pollution caused by anthropogenic activities. In particular, agricultural production is highly sensitive to environmental characteristics. Since no environmental factor is independent, the interactive effects of these factors on plants are essential for agricultural production. In this context, the interactive effects of ozone (O3) and supraoptimal temperatures remain unclear. Here, we investigated the physiological and stomatal characteristics of leaf mustard (Brassica juncea L.) in the presence of charcoal-filtered (target concentration, 10 ppb) and elevated (target concentration, 120 ppb) O3 concentrations and/or optimal (22/20 °C day/night) and supraoptimal temperatures (27/25 °C). Regarding physiological characteristics, the maximum rate of electron transport and triose phosphate use significantly decreased in the presence of elevated O3 at a supraoptimal temperature (OT conditions) compared with those in the presence of elevated O3 at an optimal temperature (O conditions). Total chlorophyll content was also significantly affected by supraoptimal temperature and elevated O3. The chlorophyll a/b ratio significantly reduced under OT conditions compared to C condition at 7 days after the beginning of exposure (DAE). Regarding stomatal characteristics, there was no significant difference in stomatal pore area between O and OT conditions, but stomatal density under OT conditions was significantly increased compared with that under O conditions. At 14 DAE, the levels of superoxide (O2-), which is a reactive oxygen species, were significantly increased under OT conditions compared with those under O conditions. Furthermore, leaf weight was significantly reduced under OT conditions compared with that under O conditions. Collectively, these results indicate that temperature is a key driver of the O3 response of B. juncea via changes in leaf physiological and stomatal characteristics.


2013 ◽  
Vol 448-453 ◽  
pp. 995-1001
Author(s):  
Ning Na Wang ◽  
Qin Lin Zhou

An effective management of water supply is critically significant to a countrys water utilities, and accurate prediction of water supply and demand is of key importance for water supply management. The objectives of this paper are to use Grey System Model (GSM) and Linear Regression Model to forecast the water demand and water supply respectively in China 2025, and then propose a new Optimal Allocation Model (OAM) to generate solution so that analysts and decision makers can gain insight and understanding. The two predictive models take into account four major factors including domestic development, agriculture, industries and eco-environment, calculating a deficit between water demand and water supply in China 2025. Then the OAM, which considers desalinization, irrigation saving and urban recycling, provides a feasible solution to fill the gap and an effectual management of water supply.


Author(s):  
Camilla Reis Augusto da Silva ◽  
Marcelo Dos Santos Silva ◽  
Léa Maria Dos Santos Lopes Ferreira ◽  
Kelly Regina Batista Leite ◽  
Lazaro Benedito da Silva

The basis of differentiation between sun and shade leaves is related to different light intensities. In order to understand the adaptability of the leaves of Rhizophora mangle L., associated with different lighting conditions, leaves were collected from the upper peripheral six individuals (sun leaves) and the lower region of the same internal (shade leaves). The variables analyzed leaf thickness, palisade parenchyma, adaxial and abaxial epidermis, adaxial and abaxial cuticle, stomatal density and index. Measurements were made ??on microscope equipped with ocular micrometer. Sun leaves were lower and with more xeromorphic characteristics, such as increased thickness of the cuticle and the adaxial and abaxial epidermis. The palisade parenchyma and limbus showed up thicker than shade leaves, with no significant difference between the cuticle of the abaxial surface. It was also observed a higher frequency of stomata per mm², an average of 70/mm², while shade leaves showed 47/mm², with no differences between length and width. Differences between the sun leaves and shade leaves indicate adaptive capacity of this species to remain active at different light conditions.


Author(s):  
Fang Wan ◽  
Lingfeng Xiao ◽  
Qihui Chai ◽  
Li Li

Abstract With the rapid development of economy and society, the contradiction between supply and demand of water resources is increasing. Efficient utilization and allocation of limited water resources are one of the main means to solve the above contradictions. In this paper, the multidimensional joint distribution of natural streamflow series in reservoirs is constructed by introducing the mixed Copula function, and the probability of wet and dry encounters between natural streamflow is analyzed. Luan River is located in the northeastern part of Hebei Province, China, taking the group of Panjiakou Reservoir, Douhe Reservoir and Yuqiao Reservoir in the downstream of Luan River Basin as an example, the probabilities of synchronous and asynchronous abundance and depletion of inflow from the reservoirs are calculated. The results show that the probability of natural streamflow series between reservoirs is 61.14% for wetness and dryness asynchronous, which has certain mutual compensation ability. Therefore, it is necessary to minimize the risk of water supply security in Tianjin, Tangshan and other cities, and strengthen the optimal joint water supply scheduling of reservoirs. The research results are reasonable and reliable, which can provide reference for water supply operation of other basins.


Water ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 1522 ◽  
Author(s):  
Hadi Heidari ◽  
Mazdak Arabi ◽  
Mahshid Ghanbari ◽  
Travis Warziniack

Changes in climate, land use, and population can increase annual and interannual variability of socioeconomic droughts in water-scarce regions. This study develops a probabilistic approach to improve characterization of sub-annual socioeconomic drought intensity-duration-frequency (IDF) relationships under shifts in water supply and demand conditions. A mixture Gamma-Generalized Pareto (Gamma-GPD) model is proposed to enhance characterization of both the non-extreme and extreme socioeconomic droughts. Subsequently, the mixture model is used to determine sub-annual socioeconomic drought intensity-duration-frequency (IDF) relationships, return period, amplification factor, and drought risk. The application of the framework is demonstrated for the City of Fort Collins (Colorado, USA) water supply system. The water demand and supply time series for the 1985–2065 are estimated using the Integrated Urban water Model (IUWM) and the Soil and Water Assessment Tool (SWAT), respectively, with climate forcing from statistically downscaled CMIP5 projections. The results from the case study indicate that the mixture model leads to enhanced estimation of sub-annual socioeconomic drought frequencies, particularly for extreme events. The probabilistic approach presented in this study provides a procedure to update sub-annual socioeconomic drought IDF curves while taking into account changes in water supply and demand conditions.


Sign in / Sign up

Export Citation Format

Share Document