Kinesin family member 2C promotes hepatocellular carcinoma growth and metastasis via activating MEK/ERK pathway

Author(s):  
Qian Ding ◽  
Caihua Jiang ◽  
Yajing Zhou ◽  
Jianping Duan ◽  
Jianming Lai ◽  
...  

ABSTRACT The current work was intended to explore the function and mechanism of Kinesin family member 2C (KIF2C) in hepatocellular carcinoma (HCC). In this study, KIF2C expression was at a high level in HCC and indicated poor prognosis. Silencing KIF2C significantly suppressed the proliferation, migration and invasion in HCC cells. Furthermore, silencing KIF2C markedly decreased the expression of Snail, Vimentin, p-MEK and p-ERK, but increased E-cadherin expression in HCC cells. Moreover, we also found that MEK/ERK inhibitor U0126 could enhance the impact on cell proliferation, migration and invasion induced by silencing KIF2C in HCC. On the contrary, MEK/ERK activator PAF could weaken the impact induced by silencing KIF2C in HCC. Thus, our findings indicate that KIF2C can promote the proliferation, migration and invasion by activating MEK/ERK pathway in HCC.

Author(s):  
Hui Sun ◽  
Junwei Zhai ◽  
Li Zhang ◽  
Yingnan Chen

IntroductionEmerging evidence suggests that circular RNAs (circRNAs) play critical roles in tumorigenesis. However, the roles and molecular mechanisms of circRNA leucine-rich repeat immunoglobulin domain-containing protein 3 (circ_LRIG3) in hepatocellular carcinoma (HCC) has not been investigated.Material and methodsThe expression levels of circ_LRIG3, miR-223-3p, and mitogen-activated protein kinase kinase 6 (MAP2K6) were determined by qRT-PCR. Flow cytometry was applied to determine the cell cycle distribution and apoptosis. Cell proliferation, migration and invasion were assessed by MTT, colony formation, and transwell assays. Western blot assay was employed to measure the protein levels of the snail, E-cadherin, MAP2K6, mitogen-activated protein kinase (MAPK), phospho-MAPK (p-MAPK), extracellular signal-regulated kinases (ERKs), and phospho-ERKs (p- ERKs). The relationship between miR-223-3p and circ_LRIG3 or MAP2K6 was predicted by bioinformatics tools and verified by dual-luciferase reporter assay. A xenograft tumor model was established to confirm the functions of circ_LRIG3 in vivo.ResultsCirc_LRIG3 and MAP2K6 expression were enhanced while miR-223-3p abundance was reduced in HCC tissues and cells. Knockdown of circ_LRIG3 inhibited cell proliferation, metastasis, and increasing apoptosis. MiR-223-3p was a target of circ_LRIG3, and its downregulation reversed the inhibitory effect of circ_LRIG3 knockdown on the progression of HCC cells. Moreover, MAP2K6 could bind to miR-223-3p, and MAP2K6 upregulation also abolished the suppressive impact of circ_LRIG3 interference on progression of HCC cells. Additionally, the silence of circ_LRIG3 suppressed the activation of the MAPK/ERK pathway and tumor growth by upregulating miR-223-3p and downregulating MAP2K6.ConclusionsCirc_LRIG3 knockdown inhibited HCC progression through regulating miR-223-3p/MAP2K6 axis and inactivating MAPK/ERK pathway.


2020 ◽  
Author(s):  
Hui Sun ◽  
Junwei Zhai ◽  
Li Zhang ◽  
Yingnan Chen

Abstract Background: Emerging evidence suggests that circular RNAs (circRNAs) play critical roles in tumorigenesis. However, the roles and molecular mechanism of circRNA leucine-rich repeat immunoglobulin domain-containing protein 3 (circ_LRIG3) in hepatocellular carcinoma (HCC) have not been investigated.Methods: The expression levels of circ_LRIG3, microRNA-223-3p (miR-223-3p), and mitogen-activated protein kinase kinase 6 (MAP2K6) were determined by quantitative real-time polymerase chain reaction (qRT-PCR). Flow cytometry was applied to determine the cell cycle distribution and cell apoptosis. Cell proliferation, migration and invasion were assessed by methylthiazolyldiphenyl-tetrazolium bromide (MTT) assay and transwell assay, respectively. Western blot assay was employed to measure the protein levels of snail, E-cadherin, MAP2K6, mitogen-activated protein kinase (MAPK), phospho-MAPK (p-MAPK), extracellular signal-regulated kinases (ERKs), and phospho-ERKs (p-ERKs). The relationship between miR-223-3p and circ_LRIG3 or MAP2K6 was predicted by bioinformatics tools and verified by dual-luciferase reporter assay. A xenograft tumor model was established to confirm the functions of circ_LRIG3 in vivo.Results: Circ_LRIG3 and MAP2K6 expression were enhanced while miR-223-3p abundance was reduced in HCC tissues and cells. Knockdown of circ_LRIG3 inhibited the progression of HCC cells via reducing cell proliferation, metastasis and increasing apoptosis. MiR-223-3p was a target of circ_LRIG3 and its downregulation reversed the inhibitory effect of circ_LRIG3 knockdown on progression of HCC cells. Moreover, MAP2K6 could bind to miR-223-3p, and MAP2K6 upregulation also abolished the suppressive impact of circ_LRIG3 interference on progression of HCC cells. Additionally, silence of circ_LRIG3 suppressed the activation of MAPK/ERK pathway and tumor growth by upregulating miR-223-3p and downregulating MAP2K6.Conclusion: Circ_LRIG3 knockdown inhibited HCC progression through regulating miR-223-3p/MAP2K6 axis and inactivating MAPK/ERK pathway, providing a potential therapeutic approach for patients with HCC.


Author(s):  
Yan Su ◽  
Ruizhu Xie ◽  
Qinyan Xu

Objective: Hepatocellular carcinoma (HCC) is one of the leading causes of cancer-related death worldwide. This study aimed to analyze the prognostic value of microRNA-1266-5p (miR-1266-5p) in HCC patients and investigate its biological function in HCC progression. Methods: The expression of miR-1266-5p in tissues and cells was measured by quantitative real-time PCR (qRT-PCR). Cell counting kit-8 (CCK-8) assay was used to detect HCC cell proliferation. Transwell assay was performed to evaluate the migration and invasion of HCC cells. Kaplan-Meier methods and Cox regression analysis were used to assess the prognostic value of miR-1266-5p in HCC patients. The relationship between miR-1266-5p and DAB2IP was evaluated by luciferase reporter assay. Results: Relative expression of miR-1266-5p in tumor tissues, tissues from patients with advanced TNM stage (III–IV) and HCC cells was increased compared with that in corresponding control group. MiR-1266-5p expression was significantly associated with tumor size and TNM stage in HCC patients. Elevated expression of miR-1266-5p was associated with poor prognosis of HCC patients and served as an independent prognostic factor for HCC patients. Overexpression of miR-1266-5p significantly promoted, while miR-1266-5p knockdown significantly inhibited the proliferation, migration and invasion of HCC cells. DAB2IP could directly bind to the miR-1266-5p. Conclusion: Our findings indicated that elevated expression of miR-1266-5p can predict the poor prognosis of HCC patients, and promotes the proliferation, migration and invasion of HCC cells. Therefore, we predict that miR-1266-5p may be a novel biomarker and therapeutic target for the treatment of HCC.


2019 ◽  
Vol 68 (1) ◽  
pp. 68-74
Author(s):  
Qiu-Ting Li ◽  
Yi-Ming Feng ◽  
Zun-Hui Ke ◽  
Meng-Jun Qiu ◽  
Xiao-Xiao He ◽  
...  

Hepatocellular Carcinoma (HCC) is one of the most common malignancies in the world, and is well-known for its bad prognosis. Potassium calcium-activated channel subfamily N member 4 (KCNN4) is a type of intermediate conductance calcium-activated potassium channel, and increasing evidence suggests that KCNN4 contributes to the regulation of invasion and metastasis in a number of cancers. However, its clinical significance and biological function remain unclear in the HCC disease process. In this study, the expression levels of KCNN4 in 86 HCC samples were compared with corresponding paracancerous tissues. sh-RNA was used to reduce the expression of KCNN4 in Hep3B HCC cells in vitro; this was confirmed by Real time-PCR and western blotting. Wound healing, transwell assays and high content analysis were performed to investigate the tumor-promoting characteristics of KCNN4 in Hep3B HCC cells. As results, KCNN4 expression was significantly associated with preoperative serum alpha-fetoprotein level (p=0.038) and TNM stage (p=0.039). Additionally, patients with high KCNN4 amplification in HCC tissue exhibited shorter disease-free survival, whereas there was no statistical significance between KCNN4 amplification and overall survival. Wound healing and transwell assays showed that knockdown of KCNN4 expression could reduce migration and invasion abilities of HCC cells. High content analysis result showed that down-regulated KCNN4 could inhibit the ability of HCC cell proliferation. The mitogen-activated protein kinase (MAPK) pathway is active in cell proliferation, differentiation, migration, senescence, and apoptosis. Matrix metallopeptidase 9 and extracellular signal regulated kinase 1/2 (ERK1/2) were important biomarkers of MAPK/ERK pathway, knockdown of KCNN4 reduced the expression of MMP9 and ERK1/2. These findings showed that KCNN4 promotes HCC invasion and metastasis through the MAPK/ERK pathway.


2021 ◽  
Vol 12 (4) ◽  
Author(s):  
Xiaoguang Gu ◽  
Jianan Zhang ◽  
Yajuan Ran ◽  
Hena Pan ◽  
JinHong Jia ◽  
...  

AbstractCircular RNAs have been reported to play significant roles in regulating pathophysiological processes while also guiding clinical diagnosis and treatment of hepatocellular carcinoma (HCC). However, only a few circRNAs have been identified thus far. Herein, we investigated the role of a specific closed-loop structure of hsa_circ_101555 that was generated by back-splicing of the host gene casein kinase 1 gamma 1 (CSNK1G1) in the development and proliferation of HCC. We investigated the expression of Hsa_circ_101555 in HCC and normal tissues using bioinformatics. The expression level of hsa_circ_101555 was further detected by fluorescence in situ hybridization and qRT-PCR in ten HCC patients. Transwell, migration, WST-1 assays, and colony formation assays were used to evaluate the role of hsa_circ_101555 in HCC development and proliferation. The regulatory mechanisms of hsa_circ_101555 in miR-145-5p and CDCA3 were determined by dual luciferase reporter assay. A mouse xenograft model was also used to determine the effect of hsa_circ_101555 on HCC growth in vivo. hsa_circ_101555 showed greater stability than the linear RNA; while in vitro and in vivo results demonstrated that hsa_circ_101555 silencing significantly suppressed cell proliferation, migration, and invasion of HCC cells. Rescue experiments further demonstrated that suppression of miR-145-5p significantly attenuated the biological effects of hsa_circ_101555 knockdown in HCC cells. We also identified a putative oncogene CDCA3 as a potential miR-145-5p target. Thus, our results demonstrated that hsa_circ_101555 might function as a competing endogenous RNA of miR-145-5p to upregulate CDCA3 expression in HCC. These findings suggest that hsa_circ_101555 may be a potential therapeutic target for patients with HCC.


Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 33-33
Author(s):  
Lei Yuan ◽  
Lu Sun ◽  
Yu Zhao ◽  
Hongmei Jing ◽  
Xiaoyan Ke

Background:B7-H6 is a novel co-stimulatory protein that is exclusively expressed on a variety of cancer cells and associated with poor prognosis. T cell lymphoblastic lymphoma (T-LBL) is a highly aggressive hematological malignancy whose treatment requires reliable prognostic biomarkers and therapeutic targets. The rare nature and delayed progression of T-LBL has limited its clinical management. Methods:B7-H6 expression was analyzed by immunohistochemistry (IHC) in 65 T-LBL samples, and its association with clinicopathological characteristics and prognosis was analyzed. Jurkat cell with B7-H6 depletion was constructed to investigate the impact of B7-H6 on cell proliferation, migration, and invasion ability. RNA sequencing was used to explore aberrantly expressing genes. Results:In this study, we used immunohistochemistry to show the expression of B7-H6 in 61.5% (40/65) of the cohort, including 38.5% (25/65) patients with membrane/cytoplasmic expression of B7-H6. Although B7-H6 expression varied across samples and did not correlate with patient survival, it was significantly associated with B symptoms, higher ECOG score (3-4), elevated serum lactate dehydrogenase, and reduced complete remission at interim evaluation. B7-H6 underwent translocation into the nucleus of T-LBL cells and had a specific nuclear localization sequence in the C-terminus. Depleting Jurkat cells of B7-H6 impaired cell proliferation, migration, and invasion. RNAseq showed the differential expression of RAG-1 that could be involved in the tumorigenesis of T-LBL. Conclusions:B7-H6 may serve as a novel prognostic biomarker and therapeutic target of T-LBL. Disclosures Ke: Peking University Third Hospital:Current Employment.


2020 ◽  
Vol 19 ◽  
pp. 153303382095702
Author(s):  
Xue-zhen Song ◽  
Xiao-ning Ren ◽  
Xiao-jun Xu ◽  
Xiao-xuan Ruan ◽  
Yi-li Wang ◽  
...  

Hepatocellular carcinoma (HCC) is a severe disease with high mortality in the world. Emerging evidence has suggested that lncRNAs play an important role in cancer progression, including HCC. This study aimed to comprehensively investigate the effect of lncRNA RHPN1 antisense RNA 1 (RHPN1-AS1) on HCC and its underlying molecular mechanism. In this study, we evaluated the expressions of lncRNA RHPN1-AS1 and miR-7-5p by qRT-RCR in both HCC tissue and HCC cells. Our findings showed that lncRNA RHPN1-AS1 was upregulated in HCC tissue and HCC cells, while miR-7-5p was downregulated. LncRNA RHPN1-AS1 expression in HCC patients was closely related to vascular invasion, tumor-node-metastasis (TNM) stage and barcelona clinic liver cancer (BCLC) stage. Furthermore, we quantified cell clone-formation ability, proliferation, migration and invasion of HCCLM3 and MHCC97 H cells using several assays (colony formation assay, 5-Ethynyl-2′-deoxyuridine (EdU) assay and transwell assay, respectively). Functional experiments confirmed that silencing lncRNA RHPN1-AS1 inhibited cell proliferation, migration and invasion in HCCLM3 and MHCC97 H cells. After that, bioinformatics analysis, dual luciferase reporter gene assay, qRT-PCR and western blot were used to investigate the molecular mechanism of lncRNA RHPN1-AS1 on HCC. Mechanistically, the rescue experiments demonstrated that miR-7-5p inhibitor reversed the inhibition effect of silencing lncRNA RHPN1-AS1 on HCCLM3 cells proliferation, migration and invasion. Moreover, silencing lncRNA RHPN1-AS1 also inhibited the activation of PI3K/AKT/mTOR pathway. Taken together our findings demonstrated that lncRNA RHPN1-AS1 could facilitate cell proliferation, migration and invasion via targeting miR-7-5p and activating PI3K/AKT/mTOR pathway in HCC.


2021 ◽  
Vol 12 (5) ◽  
Author(s):  
Cheng Tang ◽  
Xiong Lei ◽  
Lingqiang Xiong ◽  
Zhigao Hu ◽  
Bo Tang

AbstractTumor-associated macrophages (TAMs) in the tumor microenvironment contribute to poor prognosis in gastric cancer (GC). However, the underlying mechanism by which TAMs promote GC progression and metastasis remains elusive. Expression of POU1F1 was detected in 60 matched GC-normal tissue pairs using qRT-PCR and immunohistochemistry (IHC) analysis. The correlation between POU1F1 and the clinical-pathological factors of GC patients were further assessed. Cell proliferation was monitored by CCK-8, colony formation, and 5-Ethynyl-2’-deoxyuridine (EdU) incorporation assays. Cell migration and invasion were assessed by transwell assays. The impact on angiogenesis was evaluated by tube formation assay. Xenograft model was generated to investigate the role of POU1F1 on tumor growth and lung metastasis in vivo. GST pull-down and Co-immunoprecipitation (Co-IP) were used to study the interaction between HMGA1B/2 and POU1F1. Chromatin immunoprecipitation (ChIP) and dual luciferase reporter assays were performed to investigate the transcriptional regulation of POU1F1. Flow cytometry was performed to detect the surface expression of macrophage markers. Upregulated POU1F1 observed both in GC tissues and cell lines was positively correlated with poor prognosis. Knockdown of POU1F1 inhibited cell proliferation, migration, invasion, and angiogenesis in vitro, and suppressed tumor growth in vivo. HMGA1B/2 transcriptionally activated-POU1F1. POU1F1 promoted GC progression via regulating macrophage proliferation, migration, polarization, and angiogenesis in a CXCL12/CXCR4-dependent manner. POU1F1 also promoted GC metastasis in lung by modulating macrophage polarization through CXCL12/CXCR4 axis in vivo. HMGA1B/2-upregulated POU1F1 promoted GC metastasis via regulating macrophage polarization in a CXCL12/CXCR4-dependent manner.


Sign in / Sign up

Export Citation Format

Share Document