scholarly journals Prediction of cancer driver genes through network-based moment propagation of mutation scores

2020 ◽  
Vol 36 (Supplement_1) ◽  
pp. i508-i515 ◽  
Author(s):  
Anja C Gumpinger ◽  
Kasper Lage ◽  
Heiko Horn ◽  
Karsten Borgwardt

Abstract Motivation Gaining a comprehensive understanding of the genetics underlying cancer development and progression is a central goal of biomedical research. Its accomplishment promises key mechanistic, diagnostic and therapeutic insights. One major step in this direction is the identification of genes that drive the emergence of tumors upon mutation. Recent advances in the field of computational biology have shown the potential of combining genetic summary statistics that represent the mutational burden in genes with biological networks, such as protein–protein interaction networks, to identify cancer driver genes. Those approaches superimpose the summary statistics on the nodes in the network, followed by an unsupervised propagation of the node scores through the network. However, this unsupervised setting does not leverage any knowledge on well-established cancer genes, a potentially valuable resource to improve the identification of novel cancer drivers. Results We develop a novel node embedding that enables classification of cancer driver genes in a supervised setting. The embedding combines a representation of the mutation score distribution in a node’s local neighborhood with network propagation. We leverage the knowledge of well-established cancer driver genes to define a positive class, resulting in a partially labeled dataset, and develop a cross-validation scheme to enable supervised prediction. The proposed node embedding followed by a supervised classification improves the predictive performance compared with baseline methods and yields a set of promising genes that constitute candidates for further biological validation. Availability and implementation Code available at https://github.com/BorgwardtLab/MoProEmbeddings. Supplementary information Supplementary data are available at Bioinformatics online.

2018 ◽  
Author(s):  
Olivier Collier ◽  
Véronique Stoven ◽  
Jean-Philippe Vert

AbstractCancer driver genes, i.e., oncogenes and tumor suppressor genes, are involved in the acquisition of important functions in tumors, providing a selective growth advantage, allowing uncontrolled proliferation and avoiding apoptosis. It is therefore important to identify these driver genes, both for the fundamental understanding of cancer and to help finding new therapeutic targets. Although the most frequently mutated driver genes have been identified, it is believed that many more remain to be discovered, particularly for driver genes specific to some cancer types.In this paper we propose a new computational method called LOTUS to predict new driver genes. LOTUS is a machine-learning based approach which allows to integrate various types of data in a versatile manner, including informations about gene mutations and protein-protein interactions. In addition, LOTUS can predict cancer driver genes in a pan-cancer setting as well as for specific cancer types, using a multitask learning strategy to share information across cancer types.We empirically show that LOTUS outperforms three other state-of-the-art driver gene prediction methods, both in terms of intrinsic consistency and prediction accuracy, and provide predictions of new cancer genes across many cancer types.Author summaryCancer development is driven by mutations and dysfunction of important, so-called cancer driver genes, that could be targeted by targeted therapies. While a number of such cancer genes have already been identified, it is believed that many more remain to be discovered. To help prioritize experimental investigations of candidate genes, several computational methods have been proposed to rank promising candidates based on their mutations in large cohorts of cancer cases, or on their interactions with known driver genes in biological networks. We propose LOTUS, a new computational approach to identify genes with high oncogenic potential. LOTUS implements a machine learning approach to learn an oncogenic potential score from known driver genes, and brings two novelties compared to existing methods. First, it allows to easily combine heterogeneous informations into the scoring function, which we illustrate by learning a scoring function from both known mutations in large cancer cohorts and interactions in biological networks. Second, using a multitask learning strategy, it can predict different driver genes for different cancer types, while sharing information between them to improve the prediction for every type. We provide experimental results showing that LOTUS significantly outperforms several state-of-the-art cancer gene prediction softwares.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Antonio Colaprico ◽  
Catharina Olsen ◽  
Matthew H. Bailey ◽  
Gabriel J. Odom ◽  
Thilde Terkelsen ◽  
...  

AbstractCancer driver gene alterations influence cancer development, occurring in oncogenes, tumor suppressors, and dual role genes. Discovering dual role cancer genes is difficult because of their elusive context-dependent behavior. We define oncogenic mediators as genes controlling biological processes. With them, we classify cancer driver genes, unveiling their roles in cancer mechanisms. To this end, we present Moonlight, a tool that incorporates multiple -omics data to identify critical cancer driver genes. With Moonlight, we analyze 8000+ tumor samples from 18 cancer types, discovering 3310 oncogenic mediators, 151 having dual roles. By incorporating additional data (amplification, mutation, DNA methylation, chromatin accessibility), we reveal 1000+ cancer driver genes, corroborating known molecular mechanisms. Additionally, we confirm critical cancer driver genes by analysing cell-line datasets. We discover inactivation of tumor suppressors in intron regions and that tissue type and subtype indicate dual role status. These findings help explain tumor heterogeneity and could guide therapeutic decisions.


2018 ◽  
Author(s):  
Paul Ashford ◽  
Camilla S.M. Pang ◽  
Aurelio A. Moya-García ◽  
Tolulope Adeyelu ◽  
Christine A. Orengo

Tumour sequencing identifies highly recurrent point mutations in cancer driver genes, but rare functional mutations are hard to distinguish from large numbers of passengers. We developed a novel computational platform applying a multi-modal approach to filter out passengers and more robustly identify putative driver genes. The primary filter identifies enrichment of cancer mutations in CATH functional families (CATH-FunFams) – structurally and functionally coherent sets of evolutionary related domains. Using structural representatives from CATH-FunFams, we subsequently seek enrichment of mutations in 3D and show that these mutation clusters have a very significant tendency to lie close to known functional sites or conserved sites predicted using CATH-FunFams. Our third filter identifies enrichment of putative driver genes in functionally coherent protein network modules confirmed by literature analysis to be cancer associated.Our approach is complementary to other domain enrichment approaches exploiting Pfam families, but benefits from more functionally coherent groupings of domains. Using a set of mutations from 22 cancers we detect 151 putative cancer drivers, of which 79 are not listed in cancer resources and include recently validated cancer genes EPHA7, DCC netrin-1 receptor and zinc-finger protein ZNF479.


2019 ◽  
Author(s):  
Pramod Chandrashekar ◽  
Navid Ahmadinejad ◽  
Junwen Wang ◽  
Aleksandar Sekulic ◽  
Jan B Egan ◽  
...  

Abstract Motivation Functions of cancer driver genes vary substantially across tissues and organs. Distinguishing passenger genes (PGs), oncogenes (OGs) and tumor suppressor genes (TSGs) for each cancer type is critical for understanding tumor biology and identifying clinically actionable targets. Although many computational tools are available to predict putative cancer driver genes, resources for context-aware classifications of OGs and TSGs are limited. Results We show that the direction and magnitude of somatic selection of protein-coding mutations are significantly different for PGs, OGs and TSGs. Based on these patterns, we develop a new method (genes under selection in tumors, GUST) to discover OGs and TSGs in a cancer-type specific manner. GUST shows a high accuracy (92%) when evaluated via strict cross-validations. Its application to 10,172 tumor exomes found known and novel cancer drivers with high tissue-specificities. In 11 out of 13 OGs shared among multiple cancer types, we found functional domains selectively engaged in different cancers, suggesting differences in disease mechanisms. Availability An R implementation of the GUST algorithm is available at https://github.com/liliulab/gust. A database with pre-computed results is available at https://liliulab.shinyapps.io/gust. Supplementary information Supplementary data are available at Bioinformatics online.


2019 ◽  
Vol 12 (S7) ◽  
Author(s):  
Hua Zhong ◽  
Mingzhou Song

Abstract Background Most statistical methods used to identify cancer driver genes are either biased due to choice of assumed parametric models or insensitive to directional relationships important for causal inference. To overcome modeling biases and directional insensitivity, a recent statistical functional chi-squared test (FunChisq) detects directional association via model-free functional dependency. FunChisq examines patterns pointing from independent to dependent variables arising from linear, non-linear, or many-to-one functional relationships. Meanwhile, the Functional Annotation of Mammalian Genome 5 (FANTOM5) project surveyed gene expression at over 200,000 transcription start sites (TSSs) in nearly all human tissue types, primary cell types, and cancer cell lines. The data cover TSSs originated from both coding and noncoding genes. For the vast uncharacterized human TSSs that may exhibit complex patterns in cancer versus normal tissues, the model-free property of FunChisq provides us an unprecedented opportunity to assess the evidence for a gene’s directional effect on human cancer. Results We first evaluated FunChisq and six other methods using 719 curated cancer genes on the FANTOM5 data. FunChisq performed best in detecting known cancer driver genes from non-cancer genes. We also show the capacity of FunChisq to reveal non-monotonic patterns of functional association, to which typical differential analysis methods such as t-test are insensitive. Further applying FunChisq to screen unannotated TSSs in FANTOM5, we predicted 1108 putative cancer driver noncoding RNAs, stronger than 90% of curated cancer driver genes. Next, we compared leukemia samples against other samples in FANTOM5 and FunChisq predicted 332/79 potential biomarkers for lymphoid/myeloid leukemia, stronger than the TSSs of all 87/100 known driver genes in lymphoid/myeloid leukemia. Conclusions This study demonstrated the advantage of FunChisq in revealing directional association, especially in detecting non-monotonic patterns. Here, we also provide the most comprehensive catalog of high-quality biomarkers that may play a causative role in human cancers, including putative cancer driver noncoding RNAs and lymphoid/myeloid leukemia specific biomarkers.


2018 ◽  
Author(s):  
Felix Dietlein ◽  
Donate Weghorn ◽  
Amaro Taylor-Weiner ◽  
André Richters ◽  
Brendan Reardon ◽  
...  

Many cancer genomes contain large numbers of somatic mutations, but few of these mutations drive tumor development. Current approaches to identify cancer driver genes are largely based on mutational recurrence, i.e. they search for genes with an increased number of nonsynonymous mutations relative to the local background mutation rate. Multiple studies have noted that the sensitivity of recurrence-based methods is limited in tumors with high background mutation rates, because passenger mutations dilute their statistical power. Here, we observe that passenger mutations tend to occur in characteristic nucleotide sequence contexts, while driver mutations follow a different distribution pattern determined by the location of functionally relevant genomic positions along the protein-coding sequence. To discover new cancer genes, we searched for genes with an excess of mutations in unusual nucleotide contexts that deviate from the characteristic context around passenger mutations. By applying this statistical framework to whole-exome sequencing data from 12,004 tumors, we discovered a long tail of novel candidate cancer genes with mutation frequencies as low as 1% and functional supporting evidence. Our results show that considering both the number and the nucleotide context around mutations helps identify novel cancer driver genes, particularly in tumors with high background mutation rates.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Cesim Erten ◽  
Aissa Houdjedj ◽  
Hilal Kazan

Abstract Background Recent cancer genomic studies have generated detailed molecular data on a large number of cancer patients. A key remaining problem in cancer genomics is the identification of driver genes. Results We propose BetweenNet, a computational approach that integrates genomic data with a protein-protein interaction network to identify cancer driver genes. BetweenNet utilizes a measure based on betweenness centrality on patient specific networks to identify the so-called outlier genes that correspond to dysregulated genes for each patient. Setting up the relationship between the mutated genes and the outliers through a bipartite graph, it employs a random-walk process on the graph, which provides the final prioritization of the mutated genes. We compare BetweenNet against state-of-the art cancer gene prioritization methods on lung, breast, and pan-cancer datasets. Conclusions Our evaluations show that BetweenNet is better at recovering known cancer genes based on multiple reference databases. Additionally, we show that the GO terms and the reference pathways enriched in BetweenNet ranked genes and those that are enriched in known cancer genes overlap significantly when compared to the overlaps achieved by the rankings of the alternative methods.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Ege Ülgen ◽  
O. Uğur Sezerman

Abstract Background Cancer develops due to “driver” alterations. Numerous approaches exist for predicting cancer drivers from cohort-scale genomics data. However, methods for personalized analysis of driver genes are underdeveloped. In this study, we developed a novel personalized/batch analysis approach for driver gene prioritization utilizing somatic genomics data, called driveR. Results Combining genomics information and prior biological knowledge, driveR accurately prioritizes cancer driver genes via a multi-task learning model. Testing on 28 different datasets, this study demonstrates that driveR performs adequately, achieving a median AUC of 0.684 (range 0.651–0.861) on the 28 batch analysis test datasets, and a median AUC of 0.773 (range 0–1) on the 5157 personalized analysis test samples. Moreover, it outperforms existing approaches, achieving a significantly higher median AUC than all of MutSigCV (Wilcoxon rank-sum test p < 0.001), DriverNet (p < 0.001), OncodriveFML (p < 0.001) and MutPanning (p < 0.001) on batch analysis test datasets, and a significantly higher median AUC than DawnRank (p < 0.001) and PRODIGY (p < 0.001) on personalized analysis datasets. Conclusions This study demonstrates that the proposed method is an accurate and easy-to-utilize approach for prioritizing driver genes in cancer genomes in personalized or batch analyses. driveR is available on CRAN: https://cran.r-project.org/package=driveR.


Author(s):  
Martin Pirkl ◽  
Niko Beerenwinkel

Abstract Motivation Cancer is one of the most prevalent diseases in the world. Tumors arise due to important genes changing their activity, e.g. when inhibited or over-expressed. But these gene perturbations are difficult to observe directly. Molecular profiles of tumors can provide indirect evidence of gene perturbations. However, inferring perturbation profiles from molecular alterations is challenging due to error-prone molecular measurements and incomplete coverage of all possible molecular causes of gene perturbations. Results We have developed a novel mathematical method to analyze cancer driver genes and their patient-specific perturbation profiles. We combine genetic aberrations with gene expression data in a causal network derived across patients to infer unobserved perturbations. We show that our method can predict perturbations in simulations, CRISPR perturbation screens and breast cancer samples from The Cancer Genome Atlas. Availability and implementation The method is available as the R-package nempi at https://github.com/cbg-ethz/nempi and http://bioconductor.org/packages/nempi. Supplementary information Supplementary data are available at Bioinformatics online.


Sign in / Sign up

Export Citation Format

Share Document