scholarly journals ToxDL: deep learning using primary structure and domain embeddings for assessing protein toxicity

Author(s):  
Xiaoyong Pan ◽  
Jasper Zuallaert ◽  
Xi Wang ◽  
Hong-Bin Shen ◽  
Elda Posada Campos ◽  
...  

Abstract Motivation Genetically engineering food crops involves introducing proteins from other species into crop plant species or modifying already existing proteins with gene editing techniques. In addition, newly synthesized proteins can be used as therapeutic protein drugs against diseases. For both research and safety regulation purposes, being able to assess the potential toxicity of newly introduced/synthesized proteins is of high importance. Results In this study, we present ToxDL, a deep learning-based approach for in silico prediction of protein toxicity from sequence alone. ToxDL consists of (i) a module encompassing a convolutional neural network that has been designed to handle variable-length input sequences, (ii) a domain2vec module for generating protein domain embeddings and (iii) an output module that classifies proteins as toxic or non-toxic, using the outputs of the two aforementioned modules. Independent test results obtained for animal proteins and cross-species transferability results obtained for bacteria proteins indicate that ToxDL outperforms traditional homology-based approaches and state-of-the-art machine-learning techniques. Furthermore, through visualizations based on saliency maps, we are able to verify that the proposed network learns known toxic motifs. Moreover, the saliency maps allow for directed in silico modification of a sequence, thus making it possible to alter its predicted protein toxicity. Availability and implementation ToxDL is freely available at http://www.csbio.sjtu.edu.cn/bioinf/ToxDL/. The source code can be found at https://github.com/xypan1232/ToxDL. Supplementary information Supplementary data are available at Bioinformatics online.

Mathematics ◽  
2020 ◽  
Vol 8 (12) ◽  
pp. 2258
Author(s):  
Madhab Raj Joshi ◽  
Lewis Nkenyereye ◽  
Gyanendra Prasad Joshi ◽  
S. M. Riazul Islam ◽  
Mohammad Abdullah-Al-Wadud ◽  
...  

Enhancement of Cultural Heritage such as historical images is very crucial to safeguard the diversity of cultures. Automated colorization of black and white images has been subject to extensive research through computer vision and machine learning techniques. Our research addresses the problem of generating a plausible colored photograph of ancient, historically black, and white images of Nepal using deep learning techniques without direct human intervention. Motivated by the recent success of deep learning techniques in image processing, a feed-forward, deep Convolutional Neural Network (CNN) in combination with Inception- ResnetV2 is being trained by sets of sample images using back-propagation to recognize the pattern in RGB and grayscale values. The trained neural network is then used to predict two a* and b* chroma channels given grayscale, L channel of test images. CNN vividly colorizes images with the help of the fusion layer accounting for local features as well as global features. Two objective functions, namely, Mean Squared Error (MSE) and Peak Signal-to-Noise Ratio (PSNR), are employed for objective quality assessment between the estimated color image and its ground truth. The model is trained on the dataset created by ourselves with 1.2 K historical images comprised of old and ancient photographs of Nepal, each having 256 × 256 resolution. The loss i.e., MSE, PSNR, and accuracy of the model are found to be 6.08%, 34.65 dB, and 75.23%, respectively. Other than presenting the training results, the public acceptance or subjective validation of the generated images is assessed by means of a user study where the model shows 41.71% of naturalness while evaluating colorization results.


Vibration ◽  
2021 ◽  
Vol 4 (2) ◽  
pp. 341-356
Author(s):  
Jessada Sresakoolchai ◽  
Sakdirat Kaewunruen

Various techniques have been developed to detect railway defects. One of the popular techniques is machine learning. This unprecedented study applies deep learning, which is a branch of machine learning techniques, to detect and evaluate the severity of rail combined defects. The combined defects in the study are settlement and dipped joint. Features used to detect and evaluate the severity of combined defects are axle box accelerations simulated using a verified rolling stock dynamic behavior simulation called D-Track. A total of 1650 simulations are run to generate numerical data. Deep learning techniques used in the study are deep neural network (DNN), convolutional neural network (CNN), and recurrent neural network (RNN). Simulated data are used in two ways: simplified data and raw data. Simplified data are used to develop the DNN model, while raw data are used to develop the CNN and RNN model. For simplified data, features are extracted from raw data, which are the weight of rolling stock, the speed of rolling stock, and three peak and bottom accelerations from two wheels of rolling stock. In total, there are 14 features used as simplified data for developing the DNN model. For raw data, time-domain accelerations are used directly to develop the CNN and RNN models without processing and data extraction. Hyperparameter tuning is performed to ensure that the performance of each model is optimized. Grid search is used for performing hyperparameter tuning. To detect the combined defects, the study proposes two approaches. The first approach uses one model to detect settlement and dipped joint, and the second approach uses two models to detect settlement and dipped joint separately. The results show that the CNN models of both approaches provide the same accuracy of 99%, so one model is good enough to detect settlement and dipped joint. To evaluate the severity of the combined defects, the study applies classification and regression concepts. Classification is used to evaluate the severity by categorizing defects into light, medium, and severe classes, and regression is used to estimate the size of defects. From the study, the CNN model is suitable for evaluating dipped joint severity with an accuracy of 84% and mean absolute error (MAE) of 1.25 mm, and the RNN model is suitable for evaluating settlement severity with an accuracy of 99% and mean absolute error (MAE) of 1.58 mm.


2021 ◽  
pp. 1-55
Author(s):  
Emma A. H. Michie ◽  
Behzad Alaei ◽  
Alvar Braathen

Generating an accurate model of the subsurface for the purpose of assessing the feasibility of a CO2 storage site is crucial. In particular, how faults are interpreted is likely to influence the predicted capacity and integrity of the reservoir; whether this is through identifying high risk areas along the fault, where fluid is likely to flow across the fault, or by assessing the reactivation potential of the fault with increased pressure, causing fluid to flow up the fault. New technologies allow users to interpret faults effortlessly, and in much quicker time, utilizing methods such as Deep Learning. These Deep Learning techniques use knowledge from Neural Networks to allow end-users to compute areas where faults are likely to occur. Although these new technologies may be attractive due to reduced interpretation time, it is important to understand the inherent uncertainties in their ability to predict accurate fault geometries. Here, we compare Deep Learning fault interpretation versus manual fault interpretation, and can see distinct differences to those faults where significant ambiguity exists due to poor seismic resolution at the fault; we observe an increased irregularity when Deep Learning methods are used over conventional manual interpretation. This can result in significant differences between the resulting analyses, such as fault reactivation potential. Conversely, we observe that well-imaged faults show a close similarity between the resulting fault surfaces when both Deep Learning and manual fault interpretation methods are employed, and hence we also observe a close similarity between any attributes and fault analyses made.


Author(s):  
V Umarani ◽  
A Julian ◽  
J Deepa

Sentiment analysis has gained a lot of attention from researchers in the last year because it has been widely applied to a variety of application domains such as business, government, education, sports, tourism, biomedicine, and telecommunication services. Sentiment analysis is an automated computational method for studying or evaluating sentiments, feelings, and emotions expressed as comments, feedbacks, or critiques. The sentiment analysis process can be automated using machine learning techniques, which analyses text patterns faster. The supervised machine learning technique is the most used mechanism for sentiment analysis. The proposed work discusses the flow of sentiment analysis process and investigates the common supervised machine learning techniques such as multinomial naive bayes, Bernoulli naive bayes, logistic regression, support vector machine, random forest, K-nearest neighbor, decision tree, and deep learning techniques such as Long Short-Term Memory and Convolution Neural Network. The work examines such learning methods using standard data set and the experimental results of sentiment analysis demonstrate the performance of various classifiers taken in terms of the precision, recall, F1-score, RoC-Curve, accuracy, running time and k fold cross validation and helps in appreciating the novelty of the several deep learning techniques and also giving the user an overview of choosing the right technique for their application.


2021 ◽  
pp. 783-791
Author(s):  
Kartik Joshi ◽  
G. Vidya ◽  
Soumya Shaw ◽  
Abitha K. Thyagarajan ◽  
Akhil Pathak ◽  
...  

2020 ◽  
Vol 17 (4) ◽  
pp. 1925-1930
Author(s):  
Ambeshwar Kumar ◽  
R. Manikandan ◽  
Robbi Rahim

It’s a new era technology in the field of medical engineering giving awareness about the various healthcare features. Deep learning is a part of machine learning, it is capable of handling high dimensional data and is efficient in concentrating on the right features. Tumor is an unbelievably complex disease: a multifaceted cell has more than hundred billion cells; each cell acquires mutation exclusively. Detection of tumor particles in experiment is easily done by MRI or CT. Brain tumors can also be detected by MRI, however, deep learning techniques give a better approach to segment the brain tumor images. Deep Learning models are imprecisely encouraged by information handling and communication designs in biological nervous system. Classification plays an significant role in brain tumor detection. Neural network is creating a well-organized rule for classification. To accomplish medical image data, neural network is trained to use the Convolution algorithm. Multilayer perceptron is intended for identification of a image. In this study article, the brain images are categorized into two types: normal and abnormal. This article emphasize the importance of classification and feature selection approach for predicting the brain tumor. This classification is done by machine learning techniques like Artificial Neural Networks, Support Vector Machine and Deep Neural Network. It could be noted that more than one technique can be applied for the segmentation of tumor. The several samples of brain tumor images are classified using deep learning algorithms, convolution neural network and multi-layer perceptron.


Sign in / Sign up

Export Citation Format

Share Document