scholarly journals UglyTrees: a browser-based multispecies coalescent tree visualizer

Author(s):  
Jordan Douglas

Abstract Summary Visualization is a vital task in phylogenetics and yet there is a deficit in programs which visualize the multispecies coalescent (MSC) model. UglyTrees (UT) is an easy-to-use program for visualizing multiple gene trees embedded within a single species trees. The mapping between gene and species nodes is automatically detected allowing for ready access to the program. UT can scrape the contents of a website for MSC analyses, enabling the sharing of interactive MSC figures through optional parameters in the URL. If a posterior distribution is uploaded, the transitions between MSC states are animated allowing the visual tracking of trees throughout the sequence. Availability and implementation UT runs in all major web browsers including mobile devices, and is hosted at www.uglytrees.nz. The MIT-licensed code is available at https://github.com/UglyTrees/uglytrees.github.io.

2022 ◽  
Author(s):  
XiaoXu Pang ◽  
Da-Yong Zhang

The species studied in any evolutionary investigation generally constitute a very small proportion of all the species currently existing or that have gone extinct. It is therefore likely that introgression, which is widespread across the tree of life, involves "ghosts," i.e., unsampled, unknown, or extinct lineages. However, the impact of ghost introgression on estimations of species trees has been rarely studied and is thus poorly understood. In this study, we use mathematical analysis and simulations to examine the robustness of species tree methods based on a multispecies coalescent model under gene flow sourcing from an extant or ghost lineage. We found that very low levels of extant or ghost introgression can result in anomalous gene trees (AGTs) on three-taxon rooted trees if accompanied by strong incomplete lineage sorting (ILS). In contrast, even massive introgression, with more than half of the recipient genome descending from the donor lineage, may not necessarily lead to AGTs. In cases involving an ingroup lineage (defined as one that diverged no earlier than the most basal species under investigation) acting as the donor of introgression, the time of root divergence among the investigated species was either underestimated or remained unaffected, but for the cases of outgroup ghost lineages acting as donors, the divergence time was generally overestimated. Under many conditions of ingroup introgression, the stronger the ILS was, the higher was the accuracy of estimating the time of root divergence, although the topology of the species tree is more prone to be biased by the effect of introgression.


2019 ◽  
Vol 37 (5) ◽  
pp. 1480-1494 ◽  
Author(s):  
Anastasiia Kim ◽  
Noah A Rosenberg ◽  
James H Degnan

Abstract A labeled gene tree topology that is more probable than the labeled gene tree topology matching a species tree is called “anomalous.” Species trees that can generate such anomalous gene trees are said to be in the “anomaly zone.” Here, probabilities of “unranked” and “ranked” gene tree topologies under the multispecies coalescent are considered. A ranked tree depicts not only the topological relationship among gene lineages, as an unranked tree does, but also the sequence in which the lineages coalesce. In this article, we study how the parameters of a species tree simulated under a constant-rate birth–death process can affect the probability that the species tree lies in the anomaly zone. We find that with more than five taxa, it is possible for species trees to have both anomalous unranked and ranked gene trees. The probability of being in either type of anomaly zone increases with more taxa. The probability of anomalous gene trees also increases with higher speciation rates. We observe that the probabilities of unranked anomaly zones are higher and grow much faster than those of ranked anomaly zones as the speciation rate increases. Our simulation shows that the most probable ranked gene tree is likely to have the same unranked topology as the species tree. We design the software PRANC, which computes probabilities of ranked gene tree topologies given a species tree under the coalescent model.


PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e8271
Author(s):  
Drew J. Duckett ◽  
Tara A. Pelletier ◽  
Bryan C. Carstens

Phylogenetic estimation under the multispecies coalescent model (MSCM) assumes all incongruence among loci is caused by incomplete lineage sorting. Therefore, applying the MSCM to datasets that contain incongruence that is caused by other processes, such as gene flow, can lead to biased phylogeny estimates. To identify possible bias when using the MSCM, we present P2C2M.SNAPP. P2C2M.SNAPP is an R package that identifies model violations using posterior predictive simulation. P2C2M.SNAPP uses the posterior distribution of species trees output by the software package SNAPP to simulate posterior predictive datasets under the MSCM, and then uses summary statistics to compare either the empirical data or the posterior distribution to the posterior predictive distribution to identify model violations. In simulation testing, P2C2M.SNAPP correctly classified up to 83% of datasets (depending on the summary statistic used) as to whether or not they violated the MSCM model. P2C2M.SNAPP represents a user-friendly way for researchers to perform posterior predictive model checks when using the popular SNAPP phylogenetic estimation program. It is freely available as an R package, along with additional program details and tutorials.


Parasitology ◽  
2019 ◽  
Vol 146 (8) ◽  
pp. 1063-1074 ◽  
Author(s):  
César Gómez-Hernández ◽  
Sergio D. Pérez ◽  
Karine Rezende-Oliveira ◽  
Cecilia G. Barbosa ◽  
Eliane Lages-Silva ◽  
...  

AbstractChagas Disease is a zoonosis caused by the parasite Trypanosoma cruzi. Several high-resolution markers have subdivided T. cruzi taxon into at least seven lineages or Discrete Typing Units (DTUs) (TcI-TcVI and TcBat). Trypanosoma cruzi I is the most diverse and geographically widespread DTU. Recently a TcI genotype related to domestic cycles was proposed and named as TcIDOM. Herein, we combined traditional markers and housekeeping genes and applied a Multispecies Coalescent method to explore intra-TcI relationships, lineage boundaries and genetic diversity in a random set of isolates and DNA sequences retrieved from Genbank from different countries in the Americas. We found further evidence supporting TcIDOM as an independent and emerging genotype of TcI at least in Colombia and Venezuela. We also found evidence of high phylogenetic incongruence between parasite's gene trees (including introgression) and embedded species trees, and a lack of genetic structure among geography and hosts, illustrating the complex dynamics and epidemiology of TcI across the Americas. These findings provide novel insights into T. cruzi systematics and epidemiology and support the need to assess parasite diversity and lineage boundaries through hypothesis testing using different approaches to those traditionally employed, including the Bayesian Multispecies coalescent method.


2020 ◽  
Author(s):  
Qiuyi Li ◽  
Celine Scornavacca ◽  
Nicolas Galtier ◽  
Yao-Ban Chan

Abstract Incomplete lineage sorting (ILS), the interaction between coalescence and speciation, can generate incongruence between gene trees and species trees, as can gene duplication (D), transfer (T) and loss (L). These processes are usually modelled independently, but in reality, ILS can affect gene copy number polymorphism, i.e., interfere with DTL. This has been previously recognised, but not treated in a satisfactory way, mainly because DTL events are naturally modelled forward-in-time, while ILS is naturally modelled backwards-in-time with the coalescent. Here we consider the joint action of ILS and DTL on the gene tree/species tree problem in all its complexity. In particular, we show that the interaction between ILS and duplications/transfers (without losses) can result in patterns usually interpreted as resulting from gene loss, and that the realised rate of D, T and L becomes non-homogeneous in time when ILS is taken into account. We introduce algorithmic solutions to these problems. Our new model, the multilocus multispecies coalescent (MLMSC), which also accounts for any level of linkage between loci, generalises the multispecies coalescent model and offers a versatile, powerful framework for proper simulation and inference of gene family evolution.


2020 ◽  
Author(s):  
Laura Kubatko ◽  
Julia Chifman

AbstractThe advent of rapid and inexpensive sequencing technologies has necessitated the development of computationally efficient methods for analyzing sequence data for many genes simultaneously in a phylogenetic framework. The coalescent process is the most commonly used model for linking the underlying genealogies of individual genes with the global species-level phylogeny, but inference under the coalescent model is computationally daunting in the typical inference frameworks (e.g., the likelihood and Bayesian frameworks) due to the dimensionality of the space of both gene trees and species trees. Here we consider estimation of the branch lengths in a fixed species tree, and show that these branch lengths are identifiable. We also show that in the case of four taxa simple estimators for the branch lengths can be derived based on observed site pattern frequencies. Properties of these estimators, such as their asymptotic variances and large-sample distributions, are examined, and performance of the estimators is assessed using simulation. Finally, we use these estimators to develop a hypothesis test that can be limit species under the coalescent model.


2019 ◽  
Vol 69 (1) ◽  
pp. 194-207
Author(s):  
Richard H Adams ◽  
Todd A Castoe

Abstract Despite the ubiquitous use of statistical models for phylogenomic and population genomic inferences, this model-based rigor is rarely applied to post hoc comparison of trees. In a recent study, Garba et al. derived new methods for measuring the distance between two gene trees computed as the difference in their site pattern probability distributions. Unlike traditional metrics that compare trees solely in terms of geometry, these measures consider gene trees and associated parameters as probabilistic models that can be compared using standard information theoretic approaches. Consequently, probabilistic measures of phylogenetic tree distance can be far more informative than simply comparisons of topology and/or branch lengths alone. However, in their current form, these distance measures are not suitable for the comparison of species tree models in the presence of gene tree heterogeneity. Here, we demonstrate an approach for how the theory of Garba et al. (2018), which is based on gene tree distances, can be extended naturally to the comparison of species tree models. Multispecies coalescent (MSC) models parameterize the discrete probability distribution of gene trees conditioned upon a species tree with a particular topology and set of divergence times (in coalescent units), and thus provide a framework for measuring distances between species tree models in terms of their corresponding gene tree topology probabilities. We describe the computation of probabilistic species tree distances in the context of standard MSC models, which assume complete genetic isolation postspeciation, as well as recent theoretical extensions to the MSC in the form of network-based MSC models that relax this assumption and permit hybridization among taxa. We demonstrate these metrics using simulations and empirical species tree estimates and discuss both the benefits and limitations of these approaches. We make our species tree distance approach available as an R package called pSTDistanceR, for open use by the community.


2020 ◽  
Author(s):  
Qiuyi Li ◽  
Celine Scornavacca ◽  
Nicolas Galtier ◽  
Yao-Ban Chan

AbstractIncomplete lineage sorting (ILS), the interaction between coalescence and speciation, can generate incongruence between gene trees and species trees, as can gene duplication (D), transfer (T) and loss (L). These processes are usually modelled independently, but in reality, ILS can affect gene copy number polymorphism, i.e., interfere with DTL. This has been previously recognised, but not treated in a satisfactory way, mainly because DTL events are naturally modelled forward-in-time, while ILS is naturally modelled backwards-in-time with the coalescent. Here we consider the joint action of ILS and DTL on the gene tree/species tree problem in all its complexity. In particular, we show that the interaction between ILS and duplications/transfers (without losses) can result in patterns usually interpreted as resulting from gene loss, and that the realised rate of D, T and L becomes non-homogeneous in time when ILS is taken into account. We introduce algorithmic solutions to these problems. Our new model, the multilocus multispecies coalescent (MLMSC), which also accounts for any level of linkage between loci, generalises the multispecies coalescent model and offers a versatile, powerful framework for proper simulation and inference of gene family evolution.


PLoS ONE ◽  
2021 ◽  
Vol 16 (5) ◽  
pp. e0251107
Author(s):  
Ayed A. R. Alanzi ◽  
James H. Degnan

Species trees, which describe the evolutionary relationships between species, are often inferred from gene trees, which describe the ancestral relationships between sequences sampled at different loci from the species of interest. A common approach to inferring species trees from gene trees is motivated by supposing that gene tree variation is due to incomplete lineage sorting, also known as deep coalescence. One of the earliest methods motivated by deep coalescence is to find the species tree that minimizes the number of deep coalescent events needed to explain discrepancies between the species tree and input gene trees. This minimize deep coalescence (MDC) criterion can be applied in both rooted and unrooted settings. where either rooted or unrooted gene trees can be used to infer a rooted species tree. Previous work has shown that MDC is statistically inconsistent in the rooted setting, meaning that under a probabilistic model for deep coalescence, the multispecies coalescent, for some species trees, increasing the number of input gene trees does not make the method more likely to return a correct species tree. Here, we obtain analogous results in the unrooted setting, showing conditions leading to inconsistency of the MDC criterion using the multispecies coalescent model with unrooted gene trees for four taxa and five taxa.


2018 ◽  
Author(s):  
Dominik Schrempf ◽  
Bui Quang Minh ◽  
Arndt von Haeseler ◽  
Carolin Kosiol

AbstractMolecular phylogenetics has neglected polymorphisms within present and ancestral populations for a long time. Recently, multispecies coalescent based methods have increased in popularity, however, their application is limited to a small number of species and individuals. We introduced a polymorphism-aware phylogenetic model (PoMo), which overcomes this limitation and scales well with the increasing amount of sequence data while accounting for present and ancestral polymorphisms. PoMo circumvents handling of gene trees and directly infers species trees from allele frequency data. Here, we extend the PoMo implementation in IQ-TREE and integrate search for the statistically best-fit mutation model, the ability to infer mutation rate variation across sites, and assessment of branch support values. We exemplify an analysis of a hundred species with ten haploid individuals each, showing that PoMo can perform inference on large data sets. While PoMo is more accurate than standard substitution models applied to concatenated alignments, it is almost as fast. We also provide bmm-simulate, a software package that allows simulation of sequences evolving under PoMo. The new options consolidate the value of PoMo for phylogenetic analyses with population data.


Sign in / Sign up

Export Citation Format

Share Document